期刊文献+
共找到38,193篇文章
< 1 2 250 >
每页显示 20 50 100
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
1
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 Perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Solar image reconstruction method under atmospheric turbulence at Fuxian Lake Solar Observatory
2
作者 Sizhong Zou Zhenyu Jin +2 位作者 Kaifan Ji Jun Xu Lei Yang 《Astronomical Techniques and Instruments》 CSCD 2024年第2期128-139,共12页
Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviat... Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence. 展开更多
关键词 Astronomical seeing solar telescopes solar observatories Astronomy image processing Phase error DECONVOLUTION
下载PDF
Application and prospect of the fluid cooling system of solar arrays for probing the Sun
3
作者 Kangli Bao Xiaofei Zhu +5 位作者 Jianchao Feng Liu Liu Xiaofeng Zhang Zhiming Cai Jun Lin Yonghe Zhang 《Astronomical Techniques and Instruments》 CSCD 2024年第1期62-70,共9页
The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,... The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 103 to 106 Wm-2,which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation. 展开更多
关键词 In situ detection of solar eruption solar array cooling system Pumped fluid loop High heat flux dissipation
下载PDF
Statistical Study of the Geoeffectivity of Halo Coronal Mass Ejections Associated with X-Class Flares during Solar Cycles 23 and 24
4
作者 Younoussa Diakite Christian Zoundi +1 位作者 M’Bi Kabore Jean Louis Zerbo 《Open Journal of Applied Sciences》 2024年第4期950-960,共11页
By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ej... By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ejections associated with X-class flares appear to be among the most energetic events in solar activity given the size of the flares, the speed of the CMEs and the intense geomagnetic storms they produce. Out of eighty-six (86) X-class halo CMEs, thirty-seven (37) or 43% are highly geoeffective;twenty-four (24) or approximately 28% are moderately geoeffective and twenty-five (25) or 29% are not geoeffective. Over the two solar cycles (1996 to 2019), 71% of storms were geoeffective and 29% were not. For solar cycle 23, about 78% of storms were geoeffective, while for solar cycle 24, about 56% were geoeffective. For the statistical study based on speed, 85 halo CMEs associated with X-class flares were selected because the CME of 6 December 2006 has no recorded speed value. For both solar cycles, 75.29% of the halo CMEs associated with X-class flares have a speed greater than 1000 km/s. The study showed that 42.18% of halo (X) CMEs with speeds above 1000 km/s could cause intense geomagnetic disturbances. These results show the contribution (in terms of speed) of each class of halo (X) CMEs to the perturbation of the Earth’s magnetic field. Coronal mass ejections then become one of the key indicators of solar activity, especially as they affect the Earth. 展开更多
关键词 CME Halo (X) Geoeffectivity Geomagnetic Storm solar Flare solar Cycle
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
5
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 solar Photovoltaic (PV) Modules Thermal Efficiency Analysis Open Circuit Voltage Computational Fluid Dynamics (CFD) solar Panel Temperature Profile
下载PDF
Solar wind ion charge state distributions and compound cross sections for solar wind charge exchange X-ray emission 被引量:1
6
作者 Dimitra Koutroumpa 《Earth and Planetary Physics》 EI CSCD 2024年第1期105-118,共14页
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie... Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions. 展开更多
关键词 solar wind charge exchange X-rays MAGNETOSPHERE HELIOSPHERE
下载PDF
Two methods for separating the magnetospheric solar wind charge exchange soft X-ray emission from the diffuse X-ray background 被引量:1
7
作者 YingJie Zhang TianRan Sun +5 位作者 JenniferACarter WenHao Liu Steve Sembay ShuiNai Zhang Li Ji Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期119-132,共14页
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo... Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options. 展开更多
关键词 solar wind charge exchange(SWCX) ROSAT All-Sky Survey(RASS) soft X-ray X-ray imaging MAGNETOSPHERE
下载PDF
Comparative analysis of extreme ultraviolet solar radiation proxies during minimum activity levels 被引量:1
8
作者 A.G.Elias C.R.Martinis +4 位作者 B.F.de Haro Barbas F.D.Medina B.S.Zossi M.Fagre T.Duran 《Earth and Planetary Physics》 CAS CSCD 2023年第5期540-547,共8页
Four extreme ultraviolet(EUV)solar radiation proxies(Magnesium II core-to-wing ratio(MgII),Lymanαflux(Fα),10.7-cm solar radio flux(F10.7),and sunspot number(Rz))were analyzed during the last four consecutive solar a... Four extreme ultraviolet(EUV)solar radiation proxies(Magnesium II core-to-wing ratio(MgII),Lymanαflux(Fα),10.7-cm solar radio flux(F10.7),and sunspot number(Rz))were analyzed during the last four consecutive solar activity minima to investigate how they differ during minimum periods and how well they represent solar EUV radiation.Their variability within each minimum and between minima was compared by considering monthly means.A comparison was also made of their role in filtering the effect of solar activity from the critical frequency of the ionospheric F2 layer,foF2,which at mid to low latitudes depends mainly on EUV solar radiation.The last two solar cycles showed unusually low EUV radiation levels according to the four proxies.Regarding the connection between the EUV“true”variation and that of solar proxies,according to the foF2 filtering analysis,MgII and Fαbehaved in a more stable and suitable way,whereas Rz and F10.7 could be overestimating EUV levels during the last two minima,implying they would both underestimate the inter-minima difference of EUV when compared with the first two minima. 展开更多
关键词 solar EUV radiation solar minimum FOF2 solar activity solar EUV proxy
下载PDF
A short overview of the lead iodide residue impact and regulation strategies in perovskite solar cells
9
作者 Eng Liang Lim Zhanhua Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期504-510,I0012,共8页
Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor... Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs. 展开更多
关键词 Lead iodide RESIDUE REGULATION Perovskite solar cells Efficiency Stability
下载PDF
Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates
10
作者 潘赵耀 杨金彭 沈小双 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期668-671,共4页
Peng et al.[Science 379683(2023)]reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact(PIC)-alumina nanoplates.This method overcomes the trade-off ... Peng et al.[Science 379683(2023)]reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact(PIC)-alumina nanoplates.This method overcomes the trade-off between the open-circuit voltage and the fill factor through two mechanisms:reduced surface recombination velocity and increased bulk recombination lifetime due to better perovskite crystallinity.From arguments of drift-diffusion simulations,we find that an increase in mobility and carrier recombination lifetime in bulk are the key factors for minimizing the resistance-effect from thicker PICs and achieving a maximum power conversion efficiency(PCE)at approximately 25%reduced contact area.Furthermore,the partially replacement of perovskite films with thicker PICs would result in a reduction in short-current density,but the relative low refractive index of the PICs imbedded into the high refractive index perovskite creates light trapping structures that compensate for this loss. 展开更多
关键词 perovskite solar cells NANOSTRUCTURE CRYSTALLINE mobility
原文传递
High performance wide bandgap perovskite solar cell with low V_(OC) deficit less than 0.4 V
11
作者 Haikuo Guo Fuhua Hou +8 位作者 Xuli Ning Xiaoqi Ren Haoran Yang Rui Liu Tiantian Li Chengjun Zhu Ying Zhao Wei Li Xiaodan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期313-322,共10页
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p... Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs. 展开更多
关键词 Pb management Perovskite solar cell STRAIN Wide bandgap Stability
下载PDF
Chemical Scissors Tailored Nano‑Tellurium with High‑Entropy Morphology for Efficient Foam‑Hydrogel‑Based Solar Photothermal Evaporators
12
作者 Chenyang Xing Zihao Li +4 位作者 Ziao Wang Shaohui Zhang Zhongjian Xie Xi Zhu Zhengchun Peng 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期149-168,共20页
The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(... The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions. 展开更多
关键词 TELLURIUM High entropy Electrochemical modification solar absorption Evaporation rate
下载PDF
Interfacial modification using the cross-linkable tannic acid for highly-efficient perovskite solar cells with excellent stability
13
作者 Xing Gao Lirong Rong +6 位作者 Fei Wu Yen-Hung Lin Ye Zeng Junhong Tan Rongxing He Cheng Zhong Linna Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期236-244,共9页
Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caus... Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability. 展开更多
关键词 Tannic acid Defect passivation lons diffusion HYDROPHILIC STABILITY Perovskite solar cells
下载PDF
End-group modulation of phenazine based non-fullerene acceptors for efficient organic solar cells with high open-circuit voltage
14
作者 Yahui Zhang Yafeng Li +7 位作者 Ruixiang Peng Yi Qiu Jingyu Shi Zhenyu Chen Jinfeng Ge Cuifen Zhang Zheng Tang Ziyi Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期461-468,I0011,共9页
Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increa... Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increasing optical absorption,refining energy levels,and improving molecular packing in organic semiconductors.Herein,a series of NFAs(Pz IC-4H,Pz IC-4F,Pz IC-4Cl,Pz IC-2Br)with phenazine as the central core and with/without halogen-substituted(dicyanomethylidene)-indan-1-one(IC)as the electron-accepting end group were synthesized,and the effect of end group matched phenazine central unit on the photovoltaic performance was systematically studied.Synergetic photophysical and morphological analyses revealed that the PM6:Pz IC-4F blend involves efficient exciton dissociation,higher charge collection and transfer rates,better crystallinity,and optimal phase separation.Therefore,OSCs based on PM6:Pz IC-4F as the active layer exhibited a PCE of 16.48%with an open circuit voltage(Voc)and energy loss of 0.880 V and 0.53 e V,respectively.Accordingly,this work demonstrated a promising approach by designing phenazine-based NFAs for achieving high-performance OSCs. 展开更多
关键词 Organic solar cells Non-fullerene acceptor PHENAZINE Central core End group
下载PDF
Natural high-porous diatomaceous-earth based self-floating aerogel for efficient solar steam power generation
15
作者 Aitang Zhang Kai Wang +6 位作者 Md Julker Nine Mengyu Cao Hanwen Zong Zhiqiang Liu Hanwen Guo Jingquan Liu Dusan Losic 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期378-389,共12页
The application of solar steam generation in seawater desalination is an effective way to solve the shortage of fresh water resources.At present,many kinds of photothermal conversion materials have been developed and ... The application of solar steam generation in seawater desalination is an effective way to solve the shortage of fresh water resources.At present,many kinds of photothermal conversion materials have been developed and used as evaporators in seawater desalination.However,some evaporators need additional thermal insulation or water supply devices to achieve efficient photothermal conversion.In addition,their complex,time consuming and no scalable preparation process,high cost of raw materials and poor salt resistance hinder the practical application of these evaporator.Owing to its distinctive nanoporous structure,diatomite as fossilized single-cells algae diatoms is a promising natural silica-based material for seawater desalination.They are taken from sea and that makes true sense to use them in the sea.Herein,we report the first example of synthesis robust three-dimensional(3D)natural-diatomite composite by assembling polyaniline nanoparticles covered diatomite into the polyvinyl alcohol pre-treated melamine foam frameworks and demonstrate its application as new evaporator for seawater desalination.The porous framework does not only improve the sunlight scattering efficiency,but also offer large network of channels for water transportation.The inherent mechanism behind salt desalination process involves the absorption of water molecules on the surface of the internal silica micro-nano pores,and evaporation under the heat induced by the polyaniline absorbed sunlight.Meanwhile,the metal ions are segregated by many available pores and channels to achieve the self-desalting effect.The developed evaporator possesses the superiority of multi-stage pore structure,strong hydrophilicity,low thermal conductivity,excellent light absorption,fast water transportation and salt-resistant crystallization as well as good durability.The evaporation rate without an additional device is found to be 1.689 kg m^(-2)h^(-1)under 1-Sun irradiation,and the energy conversion efficiency is as high as 95%.This work creates a platform and develops the prospect of employing green and sustainable natural-diatomite composite evaporator for practical applications of seawater desalination. 展开更多
关键词 DIATOMITE Micro/nanopores Polyaniline Three-dimensional composite solar steam generation
下载PDF
Efficient flexible dye-sensitized solar cells from rear illumination based on different morphologies of titanium dioxide photoanode
16
作者 Zhe He Gentian Yue +2 位作者 Yueyue Gao Chen Dong Furui Tan 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期67-73,共7页
The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar ... The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar cell(FDSSC).The influences of the morphology of TiO_(2) on the photovoltaic performances of FDSSCs were investigated.Under rear illumination of 100 mW·cm^(−2),the power conversion efficiencies of FDSSCs achieved 6.96%,7.36%,7.65%,and 7.83%with the TiO_(2) photoanodes of NPs,NWs,NRs,and NTs and PEDOT counter electrode.The FDSSCs based on TiO_(2) NRs and NTs photoanodes have higher short circuit current densities and power conversion efficiencies than that of the others.The enhanced power conversion efficiency is responsible for their nanotubes and rod-shaped ordered structures,which are more beneficial to transmission of electron and hole in semiconductor compared to the TiO_(2) nanoparticles and nanowires disordered structure. 展开更多
关键词 dye-sensitized solar cells PHOTOANODE TiO_(2) MORPHOLOGY
下载PDF
Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method
17
作者 陈兴谦 王燕 +6 位作者 陈伟 刘尧平 邢国光 冯博文 李昊臻 孙纵横 杜小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期236-242,共7页
Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid text... Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells. 展开更多
关键词 V-groove alkaline etching quasi omnidirectionality silicon solar cell
原文传递
Minimizing interfacial energy losses in inverted perovskite solar cells by a dipolar stereochemical 2D perovskite interface
18
作者 Junjie Qian Jingjing He +10 位作者 Qihang Zhang Chenyue Zhu Shilin Chen Zhanpeng Wei Xuesong Leng Ziren Zhou Benben Shen Yu Peng Qiang Niu Shuang Yang Yu Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期496-503,I0011,共9页
Inverted perovskite solar cells(PSCs) have attracted broad research and industrial interest owing to their suppressed hysteresis,cost-effectiveness,and easy-fabrication.However,the issue of non-radiative recombination... Inverted perovskite solar cells(PSCs) have attracted broad research and industrial interest owing to their suppressed hysteresis,cost-effectiveness,and easy-fabrication.However,the issue of non-radiative recombination losses at the n-type interface between the perovskite and fullerene has impeded further improvement of photovoltaic performance.Here,we modify the n-type interface of FAPbI_(3) perovskite films by constructing a stereochemical two-dimensional(2D) perovskite interlayer,in which the organic cations comprise both pyridine and ammonium groups.The pyridine N donor can create stable bonding with the surface-uncoordinated Pb on the perovskite,thereby passivating the shallow-level defects and enhancing the air stability of the film.Furthermore,the pyridine N donor also offers a positive polar interface to decrease the surface work function of the perovskite film,enabling n-type modification.Ultimately,we employ a p-i-n photovoltaic(PV) device with the positive dipole interlayer at perovskite/fullerene contact and achieve remarkable photoelectric conversion efficiency(PCE) of 22.0%. 展开更多
关键词 Perovskite solar cells Dipole interlayer STEREOCHEMISTRY Non-radiative recombination
下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting
19
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Stabilizing perovskite precursors with the reductive natural amino acid for printable mesoscopic perovskite solar cells
20
作者 Wenjing Hu Jian Yang +9 位作者 Chuang Yang Xufeng Xiao Chaoyang Wang Zhaozhen Cui Qiaojiao Gao Jianhang Qi Minghao Xia Yaqiong Su Anyi Mei Hongwei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期32-39,I0003,共9页
Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device perform... Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device performance and reproducibility.Here,we utilize a reductive natural amino acid,Nacetylcysteine(NALC),to stabilize the precursor solution for printable carbon-based hole-conductorfree mesoscopic perovskite solar cells.We find that I_(2) can be generated in the aged solution containing methylammonium iodide(MI) in an inert atmosphere and speed up the MA-FA^(+)(formamidinium) reaction which produces large-size cations and hinders the formation of perovskite phase.NALC effectively stabilizes the precursor via its sulfhydryl group which reduces I_(2) back to I^(-)and provides H^(+).The NALC-stabilized precursor which is aged for 1440 h leads to devices with a power conversion efficiency equivalent to 98% of that for devices prepared with the fresh precursor.Furthermore,NALC improves the device power conversion efficiency from 16.16% to 18.41% along with enhanced stability under atmospheric conditions by modifying grain boundaries in perovskite films and reducing associated defects. 展开更多
关键词 Perovskite solar cells Perovskite precursor Degradation STABILIZATION Reductive natural amino acid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部