期刊文献+
共找到20,809篇文章
< 1 2 250 >
每页显示 20 50 100
Vertically aligned montmorillonite aerogel-encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage
1
作者 Qijing Guo Cong Guo +2 位作者 Hao Yi Feifei Jia Shaoxian Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期907-916,共10页
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon... The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications. 展开更多
关键词 montmorillonite aerogel polyethylene glycol phase change materials solar thermal energy storage flame retardant
下载PDF
Leakage Proof,Flame-Retardant,and Electromagnetic Shield Wood Morphology Genetic Composite Phase Change Materials for Solar Thermal Energy Harvesting
2
作者 Yuhui Chen Yang Meng +7 位作者 Jiangyu Zhang Yuhui Xie Hua Guo Mukun He Xuetao Shi Yi Mei Xinxin Sheng Delong Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期99-120,共22页
Phase change materials(PCMs)offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization.However,for organic solid-liquid PCMs,issues such as leakage,low th... Phase change materials(PCMs)offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization.However,for organic solid-liquid PCMs,issues such as leakage,low thermal conductivity,lack of efficient solar-thermal media,and flamma-bility have constrained their broad applications.Herein,we present an innova-tive class of versatile composite phase change materials(CPCMs)developed through a facile and environmentally friendly synthesis approach,leveraging the inherent anisotropy and unidirectional porosity of wood aerogel(nanowood)to support polyethylene glycol(PEG).The wood modification process involves the incorporation of phytic acid(PA)and MXene hybrid structure through an evaporation-induced assembly method,which could impart non-leaking PEG filling while concurrently facilitating thermal conduction,light absorption,and flame-retardant.Consequently,the as-prepared wood-based CPCMs showcase enhanced thermal conductivity(0.82 W m^(-1)K^(-1),about 4.6 times than PEG)as well as high latent heat of 135.5 kJ kg^(-1)(91.5%encapsula-tion)with thermal durability and stability throughout at least 200 heating and cooling cycles,featuring dramatic solar-thermal conversion efficiency up to 98.58%.In addition,with the synergistic effect of phytic acid and MXene,the flame-retardant performance of the CPCMs has been significantly enhanced,showing a self-extinguishing behavior.Moreover,the excellent electromagnetic shielding of 44.45 dB was endowed to the CPCMs,relieving contemporary health hazards associated with electromagnetic waves.Overall,we capitalize on the exquisite wood cell structure with unidirectional transport inherent in the development of multifunctional CPCMs,showcasing the operational principle through a proof-of-concept prototype system. 展开更多
关键词 Wood PCMs MXene solar thermal storage and conversion FLAME-RETARDANT Electromagnetic shielding
下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management 被引量:2
3
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 Phase change material NANOCOMPOSITES solar energy Sustainable energy Thermo-regulation
下载PDF
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:1
4
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites thermal energy storage Electromagnetic interference shielding
下载PDF
Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides 被引量:1
5
作者 Changjian Yuan Xianglei Liu +8 位作者 Xinrui Wang Chao Song Hangbin Zheng Cheng Tian Ke Gao Nan Sun Zhixing Jiang Yimin Xuan Yulong Ding 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1290-1305,共16页
Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffe... Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously. 展开更多
关键词 Calcium looping(CaL) solar thermochemical energy storage Binary sulfate Fast reaction kinetics
下载PDF
Development status and prospect of underground thermal energy storage technology 被引量:1
6
作者 Ying-nan Zhang Yan-guang Liu +3 位作者 Kai Bian Guo-qiang Zhou Xin Wang Mei-hua Wei 《Journal of Groundwater Science and Engineering》 2024年第1期92-108,共17页
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te... Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES. 展开更多
关键词 Aquifer thermal energy storage Borehole thermal energy storage Cavern thermal energy storage thermal energy storage technology Benefit evaluation
下载PDF
Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft 被引量:1
7
作者 Liu Liu Kangli Bao +4 位作者 Jianchao Feng Xiaofei Zhu Haoyu Wang Xiaofeng Zhang Jun Lin 《Astronomical Techniques and Instruments》 CSCD 2024年第1期52-61,共10页
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat... In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs. 展开更多
关键词 solar Close Observations and Proximity Experiments Adaptive thermal control method thermal field planning method Pumped liquid cooling system Advanced thermal management system
下载PDF
Thermo-hydro-mechanical (THM) coupled simulation of the land subsidence due to aquifer thermal energy storage (ATES) system in soft soils 被引量:1
8
作者 Yang Wang Fengshou Zhang Fang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1952-1966,共15页
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o... Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils. 展开更多
关键词 Aquifer thermal energy storage(ATES) Land subsidence TOUGH-FLAC3D Thermo-elastoplastic constitutive model
下载PDF
Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation
9
作者 Yosr Laatiri Habib Sammouda Fadhel Aloulou 《Journal of Renewable Materials》 EI CAS 2024年第4期771-798,共28页
This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul... This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems. 展开更多
关键词 CEMENT wood fiber PCM thermal conductivity thermal insulation solar energy
下载PDF
Solar and wind energy potential assessment for Razavi Khorasan Province in Iran
10
作者 HOSSEINI Amirpouya RAMEZANI Faeze MIRHOSSEINI Mojtaba 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2027-2038,共12页
This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibu... This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibull distribution parameters was conducted for different towns and zones within the province.The findings showed that Khaf has favorable characteristics for further analysis.The solar and wind energy metrics examined include global horizontal irradiance,clearness index,wind rose patterns,and turbulence intensity.At a height of 40 m,Khaf’s wind power density reached 1650 W/m^(2),indicating exceptional wind energy generation potential.Additionally,Khaf received an average annual solar radiation of 2046 kW·h/m^(2),representing significant solar energy potential.Harnessing these substantial renewable resources in Khaf could allow Razavi Khorasan Province to reduce reliance on fossil fuels,improve energy sustainability,and mitigate climate change impacts.This research contributes an in-depth assessment of Razavi Khorasan's solar and wind energy potential,particularly for the promising Khaf region.Further work may examine optimal sites for renewable energy projects and grid integration strategies to leverage these resources. 展开更多
关键词 solar energy wind energy Razavi Khorasan RADIATION Weibull distribution
下载PDF
Role of outdoor trees on pedestrian wind and thermal conditions around a pre-education building for sustainable energy management
11
作者 LI Xiao-jie TANG Hui-li 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2039-2053,共15页
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian... Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building. 展开更多
关键词 sustainable management energy trees urban area thermal condition building
下载PDF
Thermal Stability and Degeneration Behavior of Solar Selective Absorber Based on WTi-Al_(2)O_(3)Cermet
12
作者 WANG Xiaobo FANG Wei +2 位作者 MA Yuchao CHENG Xudong LI Kewei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1555-1564,共10页
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th... A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers. 展开更多
关键词 solar selective absorber thermal stability spectral selectivity optical properties
原文传递
Particle Size Optimization of Thermochemical Salt Hydrates for High Energy Density Thermal Storage
13
作者 Andrew Martin Drew Lilley +1 位作者 Raνi Prasher Sumanjeet Kaur 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期326-333,共8页
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy... Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated. 展开更多
关键词 high energy density hydration kinetics long-term cycling thermal energy storage thermochemical materials
下载PDF
Resist Thermal Shock Through Viscoelastic Interface Encapsulation in Perovskite Solar Cells
14
作者 Sai Ma Jiahong Tang +13 位作者 Guizhou Yuan Ying Zhang Yan Wang Yuetong Wu Cheng Zhu Yimiao Wang Shengfang Wu Yue Lu Shumeng Chi Tinglu Song Huanping Zhou Manling Sui Yujing Li Qi Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期238-245,共8页
Enhancing the lifetime of perovskite solar cells(PSCs)is one of the essential challenges for their industrialization.Although the external encapsulation protects the perovskite device from the erosion of moisture and ... Enhancing the lifetime of perovskite solar cells(PSCs)is one of the essential challenges for their industrialization.Although the external encapsulation protects the perovskite device from the erosion of moisture and oxygen under various harsh conditions.However,the perovskite devices still undergo static and dynamic thermal stress during thermal and thermal cycling aging,respectively,resulting in irreversible damage to the morphology,component,and phase of stacked materials.Herein,the viscoelastic polymer polyvinyl butyral(PVB)material is designed onto the surface of perovskite films to form flexible interface encapsulation.After PVB interface encapsulation,the surface modulus of perovskite films decreases by nearly 50%,and the interface stress range under the dynamic temperature field(−40 to 85°C)drops from−42.5 to 64.8 MPa to−14.8 to 5.0 MPa.Besides,PVB forms chemical interactions with FA+cations and Pb^(2+),and the macroscopic residual stress is regulated and defects are reduced of the PVB encapsulated perovskite film.As a result,the optimized device's efficiency increases from 22.21%to 23.11%.Additionally,after 1500 h of thermal treatment(85°C),1000 h of damp heat test(85°C&85%RH),and 250 cycles of thermal cycling test(−40 to 85°C),the devices maintain 92.6%,85.8%,and 96.1%of their initial efficiencies,respectively. 展开更多
关键词 device stability perovskite solar cells stress field surface modulus thermal shock
下载PDF
Enhancing Solar Energy Production Forecasting Using Advanced Machine Learning and Deep Learning Techniques: A Comprehensive Study on the Impact of Meteorological Data
15
作者 Nataliya Shakhovska Mykola Medykovskyi +2 位作者 Oleksandr Gurbych Mykhailo Mamchur Mykhailo Melnyk 《Computers, Materials & Continua》 SCIE EI 2024年第11期3147-3163,共17页
The increasing adoption of solar photovoltaic systems necessitates accurate forecasting of solar energy production to enhance grid stability,reliability,and economic benefits.This study explores advanced machine learn... The increasing adoption of solar photovoltaic systems necessitates accurate forecasting of solar energy production to enhance grid stability,reliability,and economic benefits.This study explores advanced machine learning(ML)and deep learning(DL)techniques for predicting solar energy generation,emphasizing the significant impact of meteorological data.A comprehensive dataset,encompassing detailed weather conditions and solar energy metrics,was collected and preprocessed to improve model accuracy.Various models were developed and trained with different preprocessing stages.Finally,three datasets were prepared.A novel hour-based prediction wrapper was introduced,utilizing external sunrise and sunset data to restrict predictions to daylight hours,thereby enhancing model performance.A cascaded stacking model incorporating association rules,weak predictors,and a modified stacking aggregation procedure was proposed,demonstrating enhanced generalization and reduced prediction errors.Results indicated that models trained on raw data generally performed better than those on stripped data.The Long Short-Term Memory(LSTM)with Inception layers’model was the most effective,achieving significant performance improvements through feature selection,data preprocessing,and innovative modeling techniques.The study underscores the potential to combine detailed meteorological data with advanced ML and DL methods to improve the accuracy of solar energy forecasting,thereby optimizing energy management and planning. 展开更多
关键词 solar energy prediction machine learning deep learning
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
16
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
Cascade utilization of full spectrum solar energy for achieving simultaneous hydrogen production and all-day thermoelectric conversion
17
作者 Tuo Zhang Liang Dong +8 位作者 Baoyuan Wang Jingkuo Qu Xiaoyuan Ye Wengao Zeng Ze Gao Bin Zhu Ziying Zhang Xiangjiu Guan Liejin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期318-327,共10页
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina... Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability. 展开更多
关键词 Hybrid solar energy conversion system Photocatalytic overall seawatersplitting Thermoelectric power generation Phase change materials All-day operation
下载PDF
KnowledgeMapping of Hybrid Solar PV andWind Energy Standalone Systems: A Bibliometric Analysis
18
作者 Quan Zhou Haiyang Li 《Energy Engineering》 EI 2024年第7期1781-1803,共23页
Renewable energy is becoming more attractive as traditional fossil fuels are rapidly depleted and expensive,and their use would release pollutants.Power systems that use both wind and solar energy are more reliable an... Renewable energy is becoming more attractive as traditional fossil fuels are rapidly depleted and expensive,and their use would release pollutants.Power systems that use both wind and solar energy are more reliable and efficient than those that utilize only one energy.Hybrid renewable energy systems(HRES)are viable for remote areas operating in standalone mode.This paper aims to present the state-of-the-art research on off-grid solar-wind hybrid energy systems over the last two decades.More than 1500 published articles extracted from the Web of Science are analyzed by bibliometric methods and processed by CiteSpace to present the results with figures and tables.Productive countries and highly cited authors are identified,and hot topics with hotspot articles are shown in landscape and timeline views.Emerging trends and new developments related to techno-economic analysis and microgrids,as well as the application of HOMER software,are predicted based on the analysis of citation bursts.Furthermore,the opportunities of hybrid energy systems for sustainable development are discussed,and challenges and possible solutions are proposed.The study of this paper provides researchers with a comprehensive understanding and intuitive representation of standalone solar-wind hybrid energy systems. 展开更多
关键词 Wind energy solar PV standalone citation bursts emerging trends
下载PDF
Geothermo-mechanical alterations due to heat energy extraction in enhanced geothermal systems: Overview and prospective directions
19
作者 Mary C.Ngoma Oladoyin Kolawole Olufemi Olorode 《Deep Underground Science and Engineering》 2024年第3期256-268,共13页
Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and m... Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and meet the 2050 net‐zero carbon emission target.Geothermal resources in low‐permeability and medium‐and high‐temperature reservoirs in sedimentary sequence require hydraulic stimulation for enhanced geothermal systems (EGS).However,fluid migration for geothermal energy in EGS or with potential CO_(2) storage in a CO_(2)‐EGS are both dependent on the in situ flow pathway network created by induced fluid injection.These thermo‐mechanical interactions can be complex and induce varying alterations in the mechanical response when the working fluid is water (in EGS) or supercritical CO_(2)(in CO_(2)‐EGS),which could impact the geothermal energy recovery from geological formations.Therefore,there is a need for a deeper understanding of the heat extraction process in EGS and CO_(2)‐EGS.This study presents a systematic review of the effects of changes in mechanical properties and behavior of deep underground rocks on the induced flow pathway and heat recovery in EGS reservoirs with or without CO_(2) storage in CO_(2) ‐EGS.Further,we proposed waterless‐stimulated EGS as an alternative approach to improve heat energy extraction in EGS.Lastly,based on the results of our literature review and proposed ideas,we recommend promising areas of investigation that may provide more insights into understanding geothermo‐mechanics to further stimulate new research studies and accelerate the development of geothermal energy as a viable clean energy technology. 展开更多
关键词 CO_(2)-EGS enhanced geothermal systems GEOMECHANICS geothermal energy underground thermal energy
原文传递
Assessing Factors Influencing Solar Energy Adoption among Small and Medium Enterprises in Mzuzu City, Malawi
20
作者 Mkhalipie Avenea Beatrice Ke Jiang 《Energy and Power Engineering》 2024年第7期257-284,共28页
One of the many renewable energy sources that offer advantages is solar energy, which also lowers energy prices and promotes environmental sustainability and energy security. Despite these advantages, various barriers... One of the many renewable energy sources that offer advantages is solar energy, which also lowers energy prices and promotes environmental sustainability and energy security. Despite these advantages, various barriers, such as installation costs, have prevented small and medium-sized enterprises from investigating this invention. Malawi has a significant energy shortfall such that most businesses have been hindered from their profit maximization goals. The “Photovoltaic systems” (PV) that transform sunlight into electricity are the subject of this study. This type of solar energy system is situated on the building’s roof and generally produces electricity for businesses and even homes. Solar energy offers a great impact to small and medium enterprises in Mzuzu city with a cost-effective and dependable alternative to energy that has the potential to change the game. Therefore the aim of the study was to identify factors that encourage the adoption of solar energy among small medium enterprises in the city of Mzuzu city. And to identify some of barriers faced when adopting solar energy among small and medium enterprises in the city of Mzuzu. The research approach employed in the study was a survey. A survey is a type of research methodology in which primary data is gathered from a sample using a questionnaire. When information is to be gathered from a wider sample, a survey is employed. A bigger sample size was needed in this study in order to facilitate hypothesis testing. It is advised to apply a logical approach while using the survey. The survey utilized a five-point Likert scale. The study used convenience sampling to select study participants. The sample size in this study was determined using Cochran’s sample size formula. Statistical Package for Social Sciences (SPSS) and Microsoft Excel were used for statistical analysis. About 97.2% of the participants were aware of solar as a source of energy compared to 2.8 % who were unaware. The majority of participants use solar energy for lighting only, seconded by those who use electricity. The least number of participants use solar energy for cooling only. The majority of participants 21.5% indicated partnership and collaboration as the most motivating factor for the adoption of solar energy. This was followed by technical expertise 19.1 % the least number of participants 10.8% expressed that policy and regulatory frameworks were associated with the adoption of solar energy. This study found that there are no statistically significant factors influencing barriers to the adoption of solar energy. The price of solar energy adoption was identified as the least factor associated with the acceptance or rejection of solar energy. Nonetheless, the reasons given by the homes that had embraced solar technology aligned with the findings of other studies. This survey also found that although the public was aware of solar energy, and technology, there were still a number of factors that mattered, especially for non-adopters. 展开更多
关键词 solar energy Small and Medium Enterprises solar energy Adoption
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部