期刊文献+
共找到243篇文章
< 1 2 13 >
每页显示 20 50 100
Electricity Storage With High Roundtrip Efficiency in a Reversible Solid Oxide Cell Stack 被引量:1
1
作者 甘丽珍 谢奎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第4期517-522,I0002,共7页
We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to ge... We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation. 展开更多
关键词 Reversible solid oxide cell State of charge Heat storage Electricity storage Electricity generation
下载PDF
Recent progress in the structure optimization and development of proton-conducting electrolyte materials for low-temperature solid oxide cells 被引量:3
2
作者 Jia Song Yuvraj Y.Birdja +2 位作者 Deepak Pant Zhiyuan Chen Jan Vaes 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第4期848-869,共22页
This work reviews technologies that can be used to develop low-temperature solid oxide cells(LT-SOCs)and can be applied in fuel cells and electrolyzers operating at temperatures below 500℃,thus providing a more cost-... This work reviews technologies that can be used to develop low-temperature solid oxide cells(LT-SOCs)and can be applied in fuel cells and electrolyzers operating at temperatures below 500℃,thus providing a more cost-effective alternative than conventional high-temperature SOCs.Two routes showing potential to reduce the operating temperature of SOCs to below 500℃ are discussed.The first route is the principal way to enhance cell performance,namely,structure optimization.This technique includes the reduction of electrolyte thickness to the nanometer scale and the exploration of electrode structure with low polarization resistance.The other route is the development of novel protonconducting electrolyte materials,which is in the frontier of SOCs study.The fundamentals of proton conduction and the design principles of commonly used electrolyte materials are briefly explained.The most widely studied electrolyte materials for LT-SOCs,namely,perovskitetype BaCeO_(3) -and BaZrO_(3) -based oxides,and the effect of doping on the physical-chemical properties of these oxide materials are summarized. 展开更多
关键词 low-temperature solid oxide cells PEROVSKITE DOPING thin-film
下载PDF
Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering:Recent progress and future perspectives 被引量:4
3
作者 Junxian Pan Yongjian Ye +4 位作者 Mengzhen Zhou Xiang Sun Yihan Ling Keiji Yashiro Yan Chen 《Materials Reports(Energy)》 2021年第2期35-47,共13页
Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely... Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely used fuel electrode materials for SOCs due to the low price and high activity.However,when hydrocarbon fuels are employed,nickel-based electrodes face serious carbon deposition challenges,leading to a rapid decline of cell performance.Great efforts have been devoted to understanding the occurrence of the coking reaction,and to improving the stability of the electrodes in hydrocarbon fuels.In this review,we summarize recent research progress of utilizing surface modification to improve the stability and activity of Ni-based electrodes for SOCs by preventing carbon coking.The review starts with a briefly introduction about the reaction mechanism of carbon deposition,followed by listing several surface modification technologies and their working principles.Then we introduce representative works using surface modification strategies to prevent carbon coking on Ni-based electrodes.Finally,we highlight future direction of improving electrode catalytic activity and anti-coking performance through surface engineering. 展开更多
关键词 solid oxide cells Ni-based electrodes Carbon coking Surface engineering
下载PDF
Progress on direct assembly approach for in situ fabrication of electrodes of reversible solid oxide cells 被引量:1
4
作者 Na Ai Yuanfeng Zou +2 位作者 Zhiyi Chen Kongfa Chen San Ping Jiang 《Materials Reports(Energy)》 2021年第2期61-69,共9页
Reversible solid oxide cells(SOCs)are very efficient and clean for storage and regeneration of renewable electrical energy by switching between electrolysis and fuel cell modes.One of the most critical factors governi... Reversible solid oxide cells(SOCs)are very efficient and clean for storage and regeneration of renewable electrical energy by switching between electrolysis and fuel cell modes.One of the most critical factors governing the efficiency and durability of SOCs technology is the stability of the interface between oxygen electrode and electrolyte,which is conventionally formed by sintering at a high temperature of~1000–1250℃,and which suffers from delamination problem,particularly for reversibly operated SOCs.On the other hand,our recent studies have shown that the electrode/electrolyte interface can be in situ formed by a direct assembly approach under the electrochemical polarization conditions at 800℃and lower.The direct assembly approach provides opportunities for significantly simplifying the cell fabrication procedures without the doped ceria barrier layer,enabling the utilization of a variety of high-performance oxygen electrode materials on barrier layer–free yttria-stabilized zirconia(YSZ)electrolyte.Most importantly,the in situ polarization induced interface shows a promising potential as highly active and durable interface for reversible SOCs.The objective of this progress report is to take an overview of the origin and research progress of in situ fabrication of oxygen electrodes based on the direct assembly approach.The prospect of direct assembly approach in the development of effective SOCs and in the fundamental studies of electrode/electrolyte interface reactions is discussed. 展开更多
关键词 Reversible solid oxide cell Direct assembly Oxygen electrode Hydrogen electrode Polarization induced interface Electrode/electrolyte interface stability
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:2
5
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
Advancements,strategies,and prospects of solid oxide electrolysis cells(SOECs):Towards enhanced performance and large-scale sustainable hydrogen production 被引量:1
6
作者 Amina Lahrichi Youness El Issmaeli +1 位作者 Shankara S.Kalanur Bruno G.Pollet 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期688-715,共28页
Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scal... Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scale hydrogen production.In SOEC technology,the application of innovative fabrication tech-niques,doping strategies,and advanced materials has enhanced the performance and durability of these systems,although degradation challenges persist,implicating the prime focus for future advancements.Here we provide in-depth analysis of the recent developments in SOEC technology,including Oxygen-SOECs,Proton-SOECs,and Hybrid-SOECs.Specifically,Hybrid-SOECs,with their mixed ionic conducting electrolytes,demonstrate superior efficiency and the concurrent production of hydrogen and oxygen.Coupled with the capacity to harness waste heat,these advancements in SOEC technology present signif-icant promise for pilot-scale applications in industries.The review also highlights remarkable achieve-ments and potential reductions in capital expenditure for future SOEC systems,while elaborating on the micro and macro aspects of sOECs with an emphasis on ongoing research for optimization and scal-ability.It concludes with the potential of SOEC technology to meet various industrial energy needs and its significant contribution considering the key research priorities to tackle the global energy demands,ful-fillment,and decarbonization efforts. 展开更多
关键词 solid oxide electrolysis cells Proton-SOECs Oxygen-SoECs Hybrid-SOECs Intermediate-high temperature electrolysers Hydrogenproduction
下载PDF
From concept to commercialization:A review of tubular solid oxide fuel cell technology 被引量:1
7
作者 Ruyan Chen Yuan Gao +4 位作者 Jiutao Gao Huiyu Zhang Martin Motola Muhammad Bilal Hanif Cheng-Xin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期79-109,I0003,共32页
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st... The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed. 展开更多
关键词 Tubular solid oxide fuel cell Support material Geometric structure Preparation methods STACK
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
8
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Investigation and optimization of high-valent Ta-doped SrFeO_(3-δ)as air electrode for intermediate-temperature solid oxide fuel cells
9
作者 Shanshan Jiang Hao Qiu +7 位作者 Shaohua Xu Xiaomin Xu Jingjing Jiang Beibei Xiao Paulo Sérgio Barros Juliao) Chao Su Daifen Chen Wei Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2102-2109,共8页
To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_... To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_(3-δ),STF)is investigated and optimized.The effects of Ta^(5+)doping on structure,transition metal reduction,oxygen nonstoichiometry,thermal expansion,and electrical performance are evaluated systematically.Via 10mol%Ta^(5+)doping,the thermal expansion coefficient(TEC)decreased from 34.1×10^(-6)(SrFeO_(3-δ))to 14.6×10^(-6) K^(-1)(STF),which is near the TEC of electrolyte(13.3×10^(-6) K^(-1) for Sm_(0.2)Ce_(0.8)O_(1.9),SDC),indicates excellent thermomechanical compatibility.At 550-750℃,STF shows superior oxygen vacancy concentrations(0.262 to 0.331),which is critical in the oxygen-reduction reaction(ORR).Oxygen temperature-programmed desorption(O_(2)-TPD)indicated the thermal reduction onset temperature of iron ion is around 420℃,which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves.At 600℃,the STF electrode shows area-specific resistance(ASR)of 0.152Ω·cm^(2) and peak power density(PPD)of 749 mW·cm^(-2).ORR activity of STF was further improved by introducing 30wt%Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)powder,STF+SDC composite cathode achieving outstanding ASR value of 0.115Ω·cm2 at 600℃,even comparable with benchmark cobalt-containing cathode,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF).Distribution of relaxation time(DRT)analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode.At 650℃,STF+SDC composite cathode achieving an outstanding PPD of 1117 mW·cm^(-2).The excellent results suggest that STF and STF+SDC are promising air electrodes for IT-SOFCs. 展开更多
关键词 strontium ferrite-based perovskite Ta doping composite cathode intermediate-temperature solid oxide fuel cells
下载PDF
Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process
10
作者 Shixue Liu Zhijing Liu +1 位作者 Shuxing Zhang Hao Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期405-411,共7页
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b... For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening. 展开更多
关键词 solid oxide fuel cell anode degradation focused ion beam-scanning electron microscopy lattice Boltzmann method
下载PDF
Pd-La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)composite as active and stable oxygen electrode for reversible solid oxide cells 被引量:2
11
作者 Rui Yang Yunfeng Tian +2 位作者 Yun Liu Jian Pu Bo Chi 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第4期599-604,共6页
To promote the electrocatalytic activity and stability of traditional(a_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)oxygen electrodes in reversible solid oxide cells(RSOCs),conventional physical mixed method was used t... To promote the electrocatalytic activity and stability of traditional(a_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)oxygen electrodes in reversible solid oxide cells(RSOCs),conventional physical mixed method was used to prepare the Pd-LSCF composite oxygen electrode.The cell with Pd-LSCF|GDC|YSZ|Ni-YSZ configuration shows perfect electrochemical performance in both solid oxide fuel cell(SOFC)mode and solid oxide electrolysis cell(SOEC)mode.In the SOFC mode,the cell achieves a power density of 1.73 W/cm^(2)at800℃higher than that of the LSCF oxygen electrode with 1.38 W/cm^(2).In the SOEC mode,the current density at 1.5 V is 1.67 A/cm^(2)at 800℃under 50 vol%steam concentration.Moreover,the reversibility and stability of the RSOCs were tested during 192 h long-term reversible operation.The degradation rate of the cell is only 2.2%/100 h and 2.5%/100 h in the SOEC and the SOFC modes,respectively.These results confirm that compositing Pd with the LSCF oxygen electrode can considerably boost the electrochemical performance of LSCF electrode in RSOCs field. 展开更多
关键词 Reversible solid oxide cells COMPOSITE Oxygen electrode La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ) Electrochemical performance Rare earths
原文传递
A critical review of key materials and issues in solid oxide cells 被引量:2
12
作者 Shuai He Yuanfeng Zou +1 位作者 Kongfa Chen San P.Jiang 《Interdisciplinary Materials》 2023年第1期111-136,共26页
Solid oxide cells(SOCs)are all solid ceramic devices with the dual functionality of solid oxide fuel cells(SOFCs)to convert the chemical energy of fuels like H2,natural gas and other hydrocarbons to electricity and of... Solid oxide cells(SOCs)are all solid ceramic devices with the dual functionality of solid oxide fuel cells(SOFCs)to convert the chemical energy of fuels like H2,natural gas and other hydrocarbons to electricity and of solid oxide electrolysis cells(SOECs)to store renewable electric energy of sun and wind in hydrogen fuel.Among the electrochemical energy conversion and storage devices,SOCs are the most clean and efficient technology with unique dual functionality.Due to the high operation temperature(typically 600–800°C),SOCs exhibit many advantages over other energy conversion devices,such as low material cost,high efficiency and fuel flexibility.There has been rapid development of SOC technologies over the last decade with significant advantages and progress in key materials and a fundamental understanding of key issues such as an electrode,electrolyte,performance degradation,poisoning,and stack design.The reversible polarization also has a critical effect on the surface segregation and stability of the electrode and electrode/electrolyte interface.This critical review starts with a brief introduction,working principles and thermodynamics of SOC technology to readers with interests in this rapidly developing and emerging field.Then the key materials currently used in SOCs are summarized,followed by the discussion of the most advanced electrode modification methods and critical issues of SOCs,including the surface chemistry,segregation,electrode/electrolyte interface and varying material degradation mechanisms under reversible operations.The challenges and prospects of SOC technology for future developments are discussed. 展开更多
关键词 critical review key materials and interface operating principles prospects and challenges solid oxide cells
下载PDF
Tungsten doping La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)as electrode for highly efficient and stable symmetric solid oxide cells 被引量:1
13
作者 Xin-Yi Jiao Ao-Yan Geng +4 位作者 Yi-Yang Xue Xing-Bao Wang Fang-Jun Jin Yi-Han Ling Yun-Feng Tian 《Tungsten》 EI CSCD 2023年第4期598-606,共9页
Perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)(LCFN)has been used in symmetric solid oxide cells(SSOCs)to obtain good electrochemical performance in both fuel cells(SOFCs)and electrolysis cells(SOECs)modes.... Perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)(LCFN)has been used in symmetric solid oxide cells(SSOCs)to obtain good electrochemical performance in both fuel cells(SOFCs)and electrolysis cells(SOECs)modes.However,its structural stability still faces challenges and the electrocatalytic activity also needs to be further improved.Herein,tungsten-doped La_(0.6)Ca_(0.4)Fe_(0.7)Ni_(0.2)W_(0.1)0_(3-δ)(LCFNW)perovskite oxide material was synthesized which exhibits good structural stability under H_(2)and superior electrochemical performance as an electrode for SSOCs.In SOFCs mode,the cell achieved the maximum power density of 0.58 W·cm^(-2)with wet H_(2)as fuel at 850℃.In SOECs mode,the current density can reach 1.81 A·cm^(-2)for pure CO_(2)electrolysis at 2 V.Moreover,the SSOCs exhibits outstanding long-term stability in both SOFCs and SOECs modes,proving that doping W in perovskite oxide is an effective strategy to enhance the catalytic activity and stability of the electrode.The LCFNW material developed in this work shows promising prospect as an electrode candidate for SSOCs. 展开更多
关键词 Symmetric solid oxide cells Perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ) CO_(2)electrolysis Stability
原文传递
Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells 被引量:4
14
作者 Xin Yang Zhihong Du +5 位作者 Qian Zhang Zewei Lyu Shixue Liu Zhijing Liu Minfang Han Hailei Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1181-1189,共9页
Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects o... Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects of cell operating conditions on the terminal voltage and anode microstructure of a Ni-yttria-stabilized zirconia anode-supported single cell were investigated.The microstructure of the anode active area near the electrolyte was characterized by laser optical microscopy and focused ion beam-scanning electron microscopy.Ni depletion at the anode/electrolyte interface region was observed after 100 h discharge tests.In addition,the long-term stability of the single cell was evaluated at 700℃for 3000 h.After an initial decline,the anode-supported single cell exhibits good durability with a voltage decay rate of 0.72%/kh and an electrode polarization resistance decay rate of 0.17%/kh.The main performance loss of the cell originates from the initial degradation. 展开更多
关键词 solid oxide fuel cell Ni-YSZ anode focused ion beam Ni migration electrochemical performance
下载PDF
Fabrication of Gd_(2)O_(3)-doped CeO_(2)thin films through DC reactive sputtering and their application in solid oxide fuel cells 被引量:3
15
作者 Fuyuan Liang Jiaran Yang +1 位作者 Haiqing Wang Junwei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1190-1197,共8页
Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscalin... Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests. 展开更多
关键词 solid oxide fuel cell physical vapor deposition Gd2O3-doped CeO_(2) metallic interconnects electrical conductivity
下载PDF
Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells 被引量:2
16
作者 Wan Nor Anasuhah Wan Yusoff Nurul Akidah Baharuddin +3 位作者 Mahendra Rao Somalu Andanastuti Muchtar Nigel P.Brandon Huiqing Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1933-1956,共24页
This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review... This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers. 展开更多
关键词 nano composites ELECTRODE microstructure tailoring OXIDATION symmetrical solid oxide fuel cell
下载PDF
Pulsed electrolysis of carbon dioxide by large-scale solid oxide electrolytic cells for intermittent renewable energy storage 被引量:2
17
作者 Anqi Wu Chaolei Li +5 位作者 Beibei Han Wu Liu Yang Zhang Svenja Hanson Wanbing Guan Subhash C.Singhal 《Carbon Energy》 SCIE CSCD 2023年第4期2-12,共11页
CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy... CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy is used to replicate intermittent energy availability,and the stability and conversion rate of the cyclic operation by a large-scale flat-tube SOEC are studied.One hundred cycles under pulsed current ranging from -100 to -300 mA/cm^(2) with a total operating time of about 800 h were carried out.The results show that after 100 cycles,the cell voltage attenuates by 0.041%/cycle in the high current stage of−300 mA/cm^(2),indicating that the lifetime of the cell can reach up to about 500 cycles.The total CO_(2) conversion rate reached 52%,which is close to the theoretical value of 54.3% at -300 mA/cm^(2),and the calculated efficiency approached 98.2%,assuming heat recycling.This study illustrates the significant advantages of SOEC in efficient electrochemical energy conversion,carbon emission mitigation,and seasonal energy storage. 展开更多
关键词 carbon dioxide cyclic electrolysis pulse current solid oxide electrolytic cells
下载PDF
Low molecular weight alkane-fed solid oxide fuel cells for power and chemicals cogeneration
18
作者 Ermete Antolini 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期711-735,I0015,共26页
This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals ... This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable. 展开更多
关键词 solid oxide fuel cells ALKANE ALKENE SYNGAS COGENERATION
下载PDF
Interface engineering of an electrospun nanofiber-based composite cathode for intermediate-temperature solid oxide fuel cells
19
作者 Seo Ju Kim Deokyoon Woo +3 位作者 Donguk Kim Tae Kyeong Lee Jaeyeob Lee Wonyoung Lee 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期345-353,共9页
Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface bet... Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface between the cathode and electrolyte is important for facilitating ORR kinetics and hence improving the electrochemical performance.We developed the yttria-stabilized zirconia(YSZ)nanofiber(NF)-based composite cathode,where the oxygen vacancy concentration is controlled by varying the dopant cation(Y2O3)ratio in the YSZ NFs.The composite cathode with the optimized oxygen vacancy concentration exhibits maximum power densities of 2.66 and 1.51 W cm^(−2)at 700 and 600℃,respectively,with excellent thermal stability at 700℃ over 500 h under 1.0 A cm^(−2).Electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed that the high oxygen vacancy concentration in the NF-based scaffold facilitates the charge transfer and incorporation reaction occurred at the interfaces between the cathode and electrolyte.Our results demonstrate the high feasibility and potential of interface engineering for achieving IT-SOFCs with higher performance and stability. 展开更多
关键词 solid oxide fuel cells NANOFIBER INFILTRATION oxygen reduction reactions oxygen vacancy
下载PDF
Temperature Gradient Analyses of a Tubular Solid Oxide Fuel Cell Fueled by Methanol
20
作者 Qidong Xu Meiting Guo +5 位作者 Lingchao Xia Zheng Li Qijiao He Dongqi Zhao Keqing Zheng Meng Ni 《Transactions of Tianjin University》 EI CAS 2023年第1期14-30,共17页
Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to inve... Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to investigate the thermal responses of a tubular methanol-fueled SOFC.Results show that unlike the low-temperature condition of 873 K,where the peak temperature gradient occurs at the cell center,it appears near the fuel inlet at 1073 K because of the rapid temperature rise induced by the elevated current density.Despite the large heat convection capacity,excessive air could not eff ectively eliminate the harmful temperature gradient caused by the large current density.Thus,optimal control of the current density by properly selecting the operating potential could generate a local thermal neutral state.Interestingly,the maximum axial temperature gradient could be reduced by about 18%at 973 K and 20%at 1073 K when the air with a 5 K higher temperature is supplied.Additionally,despite the higher electrochemical performance observed,the cell with a counter-fl ow arrange-ment featured by a larger hot area and higher maximum temperature gradients is not preferable for a ceramic SOFC system considering thermal durability.Overall,this study could provide insightful thermal information for the operating condition selection,structure design,and stability assessment of realistic SOFCs combined with their internal reforming process. 展开更多
关键词 solid oxide fuel cell MODELING Methanol fuel Temperature gradient Internal reforming
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部