This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu...A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.展开更多
The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with...The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with beta derivative.For this purpose,both the modified extended tanh-function(mETF)method and the homotopy analysis method(HAM)are used.While applying the mETF the chain rule for beta derivative and complex wave transform are used for obtaining the exact solution.The advantage of this procedure is that discretization or normalization is not required.By applying the mETF,the exact solutions are obtained.Also,by applying the HAM semi-analytical results for the considered equation are acquired.In HAM?curve gives us a chance to find the suitable value of the for the convergence of the solution series.Also,comparative graphical representations are given to show the effectiveness,reliability of the methods.The results show that the m ETF and HAM are reliable and applicable tools for obtaining the solutions of non-linear fractional partial differential equations that involve beta derivative.This study can bring a new perspective for studies on fractional differential equations.On the other hand,it can be said that scientists can apply the considered methods for different mathematical models arising in physics,chemistry,engineering,social sciences and etc.which involves fractional differentiation.Briefly the results may cause a new insight who studies on relativistic electron modelling.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain a...In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some n...By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
Solving nonlinear partial differential equations have attracted intensive attention in the past few decades. In this paper, the Darboux transformation method is used to derive several positon and hybrid solutions for ...Solving nonlinear partial differential equations have attracted intensive attention in the past few decades. In this paper, the Darboux transformation method is used to derive several positon and hybrid solutions for the(2+1)-dimensional complex modified Korteweg–de Vries equations. Based on the zero seed solution, the positon solution and the hybrid solutions of positon and soliton are constructed. The composition of positons is studied, showing that multi-positons of(2+1)-dimensional equations are decomposed into multi-solitons as well as the(1+1)-dimensions. Moreover, the interactions between positon and soliton are analyzed. In addition, the hybrid solutions of b-positon and breather are obtained using the plane wave seed solution, and their evolutions with time are discussed.展开更多
Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with ...Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diolewater hydrogen-bonding interactions.Herein,we screened hydrophobic zeolitic im...The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diolewater hydrogen-bonding interactions.Herein,we screened hydrophobic zeolitic imidazolate frameworks(ZIFs)with chabazite(CHA)topology for separation of 2,3-butanediol(2,3-BDO)and 1,3-propanediol(1,3-PDO),which had junctional and hydrophobic traps matching the two end methyl groups of the 2,3-BDO molecule.Based on CHA-ZIFs with the same smallsized ligand 2-methylimidazole(mIm)and different large-sized ligand benzimidazole derivatives(RbIm),CHA-ZIFs with larger surface areas were obtained by the addition of excess small-sized ligand mIm in the synthesis process.We showed that all of the hydrophobic CHA-ZIFs preferentially adsorbed 2,3-BDO over 1,3-PDO by static batch adsorption and dynamic column adsorption experiments.But ZIF-301 and ZIF-300 with halogen groups exhibited better adsorptive separation performance for 2,3-BDO/1,3-PDO than ZIF-302 with methyl groups.For a typical ZIF-301,its adsorption capacity for 2,3-BDO was 116.4 mg$g1 and selectivity for 2,3-BDO/1,3-PDO was 3.8 in dynamic column adsorption of the binarycomponent system(2,3-BDO/1,3-PDO:50 g·L^(-1)/50 g·L^(-1)).Computational simulations revealed that 2,3-BDO preferentially adsorbed in a trap at the junction between the cha and d6r cages of CHA-ZIFs,meaning the strong hosteguest interactions.Therefore,the hydrophobic CHA-ZIFs with a junctional trap were promising candidate materials for adsorbing 2,3-BDO,which also provided a new perspective for separating diols in dilute aqueous solutions.展开更多
To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using s...To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.展开更多
Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varyi...Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.展开更多
Background:Cancer-related fatigue(CRF)is a common and debilitating symptom experienced by patients with advanced-stage cancer,especially those undergoing antitumor therapy.This study aimed to evaluate the efficacy and...Background:Cancer-related fatigue(CRF)is a common and debilitating symptom experienced by patients with advanced-stage cancer,especially those undergoing antitumor therapy.This study aimed to evaluate the efficacy and safety of Renshenguben(RSGB)oral solution,a ginseng-based traditional Chinese medicine,in alleviating CRF in patients with advanced hepatocellular carcinoma(HCC)receiving antitumor treatment.Methods:In this prospective,open-label,controlled,multicenter study,patients with advanced HCC at BCLC stage C and a brief fatigue inventory(BFI)score of≥4 were enrolled.Participants were assigned to the RSGB group(RSGB,10 mL twice daily)or the control group(with supportive care).Primary and secondary endpoints were the change in multidimensional fatigue inventory(MFI)score,and BFI and functional assessment of cancer therapy-hepatobiliary(FACT-Hep)scores at weeks 4 and 8 after enrollment.Adverse events(AEs)and toxicities were assessed.Results:A total of 409 participants were enrolled,with 206 assigned to the RSGB group.At week 4,there was a trend towards improvement,but the differences were not statistically significant.At week 8,the RSGB group exhibited a significantly lower MFI score(P<0.05)compared to the control group,indicating improved fatigue levels.Additionally,the RSGB group showed significantly greater decrease in BFI and FACT-Hep scores at week 8(P<0.05).Subgroup analyses among patients receiving various antitumor treatments showed similar results.Multivariate linear regression analyses revealed that the RSGB group experienced a significantly substantial decrease in MFI,BFI,and FACT-Hep scores at week 8.No serious drug-related AEs or toxicities were observed.Conclusions:RSGB oral solution effectively reduced CRF in patients with advanced HCC undergoing antitumor therapy over an eight-week period,with no discernible toxicities.These findings support the potential of RSGB oral solution as an adjunctive treatment for managing CRF in this patient population.展开更多
Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well ...Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the National Natural Science Foundations of China(Grant Nos.12372073 and U20B2013)the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0030).
文摘A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.
文摘The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with beta derivative.For this purpose,both the modified extended tanh-function(mETF)method and the homotopy analysis method(HAM)are used.While applying the mETF the chain rule for beta derivative and complex wave transform are used for obtaining the exact solution.The advantage of this procedure is that discretization or normalization is not required.By applying the mETF,the exact solutions are obtained.Also,by applying the HAM semi-analytical results for the considered equation are acquired.In HAM?curve gives us a chance to find the suitable value of the for the convergence of the solution series.Also,comparative graphical representations are given to show the effectiveness,reliability of the methods.The results show that the m ETF and HAM are reliable and applicable tools for obtaining the solutions of non-linear fractional partial differential equations that involve beta derivative.This study can bring a new perspective for studies on fractional differential equations.On the other hand,it can be said that scientists can apply the considered methods for different mathematical models arising in physics,chemistry,engineering,social sciences and etc.which involves fractional differentiation.Briefly the results may cause a new insight who studies on relativistic electron modelling.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
文摘By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金Project sponsored by NUPTSF(Grant Nos.NY220161and NY222169)the Foundation of Jiangsu Provincial Double-Innovation Doctor Program(Grant No.JSSCBS20210541)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant No.22KJB110004)the National Natural Science Foundation of China(Grant No.11871446)。
文摘Solving nonlinear partial differential equations have attracted intensive attention in the past few decades. In this paper, the Darboux transformation method is used to derive several positon and hybrid solutions for the(2+1)-dimensional complex modified Korteweg–de Vries equations. Based on the zero seed solution, the positon solution and the hybrid solutions of positon and soliton are constructed. The composition of positons is studied, showing that multi-positons of(2+1)-dimensional equations are decomposed into multi-solitons as well as the(1+1)-dimensions. Moreover, the interactions between positon and soliton are analyzed. In addition, the hybrid solutions of b-positon and breather are obtained using the plane wave seed solution, and their evolutions with time are discussed.
文摘Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金supported by the National Natural Science Foundation of China(22278289 and 21822808)the Science Foundation for Distinguished Young Scholar of Shanxi Province(202303021223002)the Special Fund for Science and Technology Innovation Teams of Shanxi Province(202204051001009).
文摘The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diolewater hydrogen-bonding interactions.Herein,we screened hydrophobic zeolitic imidazolate frameworks(ZIFs)with chabazite(CHA)topology for separation of 2,3-butanediol(2,3-BDO)and 1,3-propanediol(1,3-PDO),which had junctional and hydrophobic traps matching the two end methyl groups of the 2,3-BDO molecule.Based on CHA-ZIFs with the same smallsized ligand 2-methylimidazole(mIm)and different large-sized ligand benzimidazole derivatives(RbIm),CHA-ZIFs with larger surface areas were obtained by the addition of excess small-sized ligand mIm in the synthesis process.We showed that all of the hydrophobic CHA-ZIFs preferentially adsorbed 2,3-BDO over 1,3-PDO by static batch adsorption and dynamic column adsorption experiments.But ZIF-301 and ZIF-300 with halogen groups exhibited better adsorptive separation performance for 2,3-BDO/1,3-PDO than ZIF-302 with methyl groups.For a typical ZIF-301,its adsorption capacity for 2,3-BDO was 116.4 mg$g1 and selectivity for 2,3-BDO/1,3-PDO was 3.8 in dynamic column adsorption of the binarycomponent system(2,3-BDO/1,3-PDO:50 g·L^(-1)/50 g·L^(-1)).Computational simulations revealed that 2,3-BDO preferentially adsorbed in a trap at the junction between the cha and d6r cages of CHA-ZIFs,meaning the strong hosteguest interactions.Therefore,the hydrophobic CHA-ZIFs with a junctional trap were promising candidate materials for adsorbing 2,3-BDO,which also provided a new perspective for separating diols in dilute aqueous solutions.
基金financial support from the National Natural Science Foundation of China(No.52074364)。
文摘To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.
基金supported by the National Key Research and Development Program of China(2022YFA1503501)the National Natural Science Foundation of China(22378112,22278127,and 22078088)+1 种基金the Fundamental Research Funds for the Central Universities(2022ZFJH004)the Shanghai Rising-Star Program(21QA1401900).
文摘Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.
基金This study was supported by grants from the National Natural Science Foundation of China(81972726,82273074 and 82372813)Dawn Project Foundation of Shanghai(21SG36)+2 种基金Shanghai Health Academic Leader Program(2022XD001)the Natural Science Foundation of Shanghai(22ZR1477900)Adjunct Talent Fund of Zhejiang Provincial People’s Hospital(2021-YT).
文摘Background:Cancer-related fatigue(CRF)is a common and debilitating symptom experienced by patients with advanced-stage cancer,especially those undergoing antitumor therapy.This study aimed to evaluate the efficacy and safety of Renshenguben(RSGB)oral solution,a ginseng-based traditional Chinese medicine,in alleviating CRF in patients with advanced hepatocellular carcinoma(HCC)receiving antitumor treatment.Methods:In this prospective,open-label,controlled,multicenter study,patients with advanced HCC at BCLC stage C and a brief fatigue inventory(BFI)score of≥4 were enrolled.Participants were assigned to the RSGB group(RSGB,10 mL twice daily)or the control group(with supportive care).Primary and secondary endpoints were the change in multidimensional fatigue inventory(MFI)score,and BFI and functional assessment of cancer therapy-hepatobiliary(FACT-Hep)scores at weeks 4 and 8 after enrollment.Adverse events(AEs)and toxicities were assessed.Results:A total of 409 participants were enrolled,with 206 assigned to the RSGB group.At week 4,there was a trend towards improvement,but the differences were not statistically significant.At week 8,the RSGB group exhibited a significantly lower MFI score(P<0.05)compared to the control group,indicating improved fatigue levels.Additionally,the RSGB group showed significantly greater decrease in BFI and FACT-Hep scores at week 8(P<0.05).Subgroup analyses among patients receiving various antitumor treatments showed similar results.Multivariate linear regression analyses revealed that the RSGB group experienced a significantly substantial decrease in MFI,BFI,and FACT-Hep scores at week 8.No serious drug-related AEs or toxicities were observed.Conclusions:RSGB oral solution effectively reduced CRF in patients with advanced HCC undergoing antitumor therapy over an eight-week period,with no discernible toxicities.These findings support the potential of RSGB oral solution as an adjunctive treatment for managing CRF in this patient population.
基金financial support received from the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z019011)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020QE112)+1 种基金the National Natural Science Foundation of China (No.51874273)the Excellent Young Scientists Fund Program of National Natural Science Foundation of China (No.52122403)。
文摘Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.