期刊文献+
共找到38,716篇文章
< 1 2 250 >
每页显示 20 50 100
A NEW MECHANISM OF ULTRASOUND ATTENUATION IN SINTERED METAL POWDERS
1
作者 Z. C. Shen( International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, China Suzhou Professional University, Suzhou 215002, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第5期338-342,共5页
ANEWMECHANISMOFULTRASOUNDATTENUATIONINSINTEREDMETALPOWDERS¥Z.C.Shen(InternationalCentreforMaterialsPhysics,C... ANEWMECHANISMOFULTRASOUNDATTENUATIONINSINTEREDMETALPOWDERS¥Z.C.Shen(InternationalCentreforMaterialsPhysics,ChineseAcademyofSc... 展开更多
关键词 sintered METAL POWDER percolating NETWORK fracton ULTRAsound attenuation
下载PDF
Effects of Dynamic Changes in Ultrasound Attenuation and Blood Perfusion on Lesion Formation of Multiple-focus Pattern during Ultrasound Surgery
2
作者 章琛曦 白景峰 陈亚珠 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第4期537-544,共8页
A nonlinear finite-element program was developed to simulate the dynamic evolution of coagulation in tissue considering temperature and thermal-dose dependence of the ultrasound attenuation and blood perfusion rate. T... A nonlinear finite-element program was developed to simulate the dynamic evolution of coagulation in tissue considering temperature and thermal-dose dependence of the ultrasound attenuation and blood perfusion rate. The effects of these dynamic parameters on the lesion formation were investigated in the particular case of ultrasound hepatic ablation with bi-focus intensity pattern. The results of simulations were compared that incorporate dynamic changes of ultrasound attenuation and perfusion and results that neglect these effects. The result shows that thermal-dose-dependent ultrasound attenuation is the dominating factor in the full dynamic model. If the dynamic ultrasound attenuation is ignored, a relatively significant underestimation of the temperature rise appears in the focal plane and the region next to the focal plane, resulting in an underestimation in predicting diameter of coagulation. Higher heating intensity leads to greater underestimation. 展开更多
关键词 ULTRAsound phased arrays finite element TEMPERATURE-DEPENDENCE thermal-dose-dependence DYNAMIC blood PERFUSION DYNAMIC ULTRAsound attenuation
下载PDF
Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number
3
作者 叶鹏程 潘光 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期476-482,共7页
Due to the high speed of underwater vehicles,cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle.The linear wave ... Due to the high speed of underwater vehicles,cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle.The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region.The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented.Based on the sound attenuation coefficients with various vapor volume fractions,the attenuation of sound intensity is calculated under large cavitation number conditions.The result shows that the sound intensity attenuation is fairly small in a certain condition.Consequently,the intensity attenuation can be neglected in engineering. 展开更多
关键词 声音信号 水下机器人 声衰减 空化数 性质 车辆 二维 水下航行器
原文传递
Intrinsic and scattering attenuations of the Sichuan-Yunnan region in China from S coda waves
4
作者 Tian Li Lei Zhang +4 位作者 Xiaodong Song Qincai Wang Xinyu Jiang Jinchuan Zhang Hanlin Chen 《Earthquake Science》 2024年第1期51-66,共16页
Seismic attenuation is a fundamental property of the Earth's media.Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied.In this stud... Seismic attenuation is a fundamental property of the Earth's media.Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied.In this study,we collected 108,399 waveforms of 11,517 local small earthquakes with magnitudes between 1.5 and 3.5 from January 2014 to September 2021 in the Sichuan-Yunnan region and its adjacent areas.We employed an envelope inversion technique for separating the intrinsic and scattering attenuations of the S coda wave,and obtained the intrinsic and scattering attenuation structures for frequencies between 0.25 and 8.00 Hz.The attenuation structures correlate well with the geological units,and some major faults mark the attenuation variations where historic large earthquakes have occurred.The regional average attenuation shows a negative frequency dependence.The average scattering attenuation has a faster descending rate than the average intrinsic attenuation,and is dominant at low frequencies,while at high frequencies the average intrinsic attenuation is stronger.The lateral variation in the intrinsic attenuation is consistent with the variation in heat flow,the scattering attenuation may be related to the scatter distribution and size.The total attenuation is consistent with the previous studies in this region,and the separate intrinsic and scattering attenuation may be useful in understanding regional tectonics and important in earthquake prevention and disaster reduction. 展开更多
关键词 Intrinsic attenuation scattering attenuation Sichuan-Yunnan region
下载PDF
A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures
5
作者 Yan-Xiao He Shang-Xu Wang +9 位作者 Gen-Yang Tang Chao Sun Hong-Bing Li San-Yi Yuan Xian Wei Li-Deng Gan Xiao-Feng Dai Qiang Ge Peng-Peng Wei Hui-Qing Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期162-181,共20页
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and... Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion. 展开更多
关键词 Low-frequency measurements Dispersion and attenuation Rock physics Fluid flow
下载PDF
Layered metastructure containing freely-designed local resonators for wave attenuation
6
作者 Yu Li Huguang He +3 位作者 Jiang Feng Hailong Chen Fengnian Jin Hualin Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr... Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap. 展开更多
关键词 Layered metastructure Local resonator Wave attenuation
下载PDF
Can urban forests provide acoustic refuges for birds?Investigating the influence of vegetation structure and anthropogenic noise on bird sound diversity
7
作者 Zezhou Hao Chengyun Zhang +8 位作者 Le Li Bing Sun Shuixing Luo Juyang Liao Qingfei Wang Ruichen Wu Xinhui Xu Christopher A.Lepczyk Nancai Pei 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期163-175,共13页
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is... As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise. 展开更多
关键词 Anthropogenic noise Bird sounds Urban forests Vegetation structure
下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
8
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND Vibration attenuation Low-frequency ultrasound vibration Transmission loss
下载PDF
P-and SV-wave dispersion and attenuation in saturated microcracked porous rock with aligned penny-shaped fractures
9
作者 Sheng-Qing Li Wen-Hao Wang +2 位作者 Yuan-Da Su Jun-Xin Guo Xiao-Ming Tang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期143-161,共19页
P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation me... P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model. 展开更多
关键词 Aligned fractures P-and SV-wave Dispersion and attenuation Microcracked porous background FB-WIFF Elastic scattering Squirt flow
下载PDF
An Innovation of Evaluation and Design of Vehicle Acceleration Sound Based on EEG Signals
10
作者 Liping Xie XinYou Lin +2 位作者 Wan Chen Zhien Liu Yawei Zhu 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期344-361,共18页
There is a bottleneck in the design of vehicle sound that the subjective perception of sound quality that combines multiple psychological factors fails to be accurately and objectively quantified.Therefore,EEG signals... There is a bottleneck in the design of vehicle sound that the subjective perception of sound quality that combines multiple psychological factors fails to be accurately and objectively quantified.Therefore,EEG signals are introduced in this paper to investigate the evaluation and design method of vehicle acceleration sound with powerful sound quality.Firstly,the experiment of EEG acquisition and subjective evaluation under the stimulation of powerful vehicle sounds is conducted,respectively,then three physiological EEG features of PSD_β,PSD_γand DE are constructed to evaluate the vehicle sounds based on the correlation analysis algorithms.Subsequently,the Adaptive Genetic Algorithm(AGA)is proposed to optimize the Elman model,where an intelligent model(AGA–Elman)is constructed to objectively predicate the perception of subjects for the vehicle sounds with powerful sound quality.The results demonstrate that the error of the constructed AGA–Elman model is only 2.88%,which outperforms than the traditional BP and Elman model;Finally,two vehicle acceleration sounds(Design1 and Design2)are designed based on the constructed AGA–Elman model from the perspective of order modulation and frequency modulation,which provide the acoustic theoretical guidance for the design of vehicle sound incorporating the EEG signals. 展开更多
关键词 EEG signal Brain activity analysis Vehicle sound design Adaptive genetic algorithm-Elman model
下载PDF
Transient elastography with controlled attenuation parameter for the diagnosis of colorectal polyps in patients with nonalcoholic fatty liver disease
11
作者 Lan Wang Yan-Fei Li Li-Feng Dong 《World Journal of Clinical Cases》 SCIE 2024年第12期2050-2055,共6页
BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to pre... BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps. 展开更多
关键词 Colorectal polyps Nonalcoholic fatty liver disease Liver-controlled attenuation parameter Liver fibroscan Diagnostic model
下载PDF
The influence of reflections from the train body and the ground on the sound radiation from a railway rail
12
作者 David J.Thompson Dong Zhao +3 位作者 Evangelos Ntotsios Giacomo Squicciarini Ester Cierco Erwin Jansen 《Railway Sciences》 2024年第1期1-17,共17页
Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper ... Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements. 展开更多
关键词 Rolling noise sound radiation Railway track Boundary elements Ground reflections DIRECTIVITY
下载PDF
An improved algorithm based on equivalent sound velocity profile method at large incident angle
13
作者 Qianqian Li Qian Tong +3 位作者 Fanlin Yang Qi Li Zhihao Juan Yu Luo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期161-167,共7页
With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical ... With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical equivalent sound speed profile(ESSP)method replaces the measured sound velocity profile(SVP)with a simple constant gradient SVP,reducing the computational workload of beam positioning.However,in deep-sea environment,the depth measurement error of this method rapidly increases from the central beam to the edge beam.By analyzing the positioning error of the ESSP method at edge beam,it is discovered that the positioning error increases monotonically with the incident angle,and the relationship between them could be expressed by polynomial function.Therefore,an error correction algorithm based on polynomial fitting is obtained.The simulation experiment conducted on an inclined seafloor shows that the proposed algorithm exhibits comparable efficiency to the original ESSP method,while significantly improving bathymetry accuracy by nearly eight times in the edge beam. 展开更多
关键词 equivalent sound speed profile ray tracing method large incident angle edge beam deep sea error correction multibeam echo-sounder system
下载PDF
Sound event localization and detection based on deep learning
14
作者 ZHAO Dada DING Kai +2 位作者 QI Xiaogang CHEN Yu FENG Hailin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期294-301,共8页
Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,... Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method. 展开更多
关键词 sound event localization and detection(SELD) deep learning convolutional recursive neural network(CRNN) channel attention mechanism
下载PDF
Acoustic properties of sintered FeCrAlY foams with open cells (Ⅱ): Sound attenuation 被引量:2
15
作者 M. KEPETS A. P. DOWLING2 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第11期1812-1837,共26页
Open-celled metal foams fabricated through metal sintering offers novel mechani- cal, thermal and acoustic properties. Previously, polymer foams were used as a means of absorbing acoustic energy. However, the structur... Open-celled metal foams fabricated through metal sintering offers novel mechani- cal, thermal and acoustic properties. Previously, polymer foams were used as a means of absorbing acoustic energy. However, the structural applications of these foams are inherently limited. The metal sintering approach provides a cost-effective means for the mass-production of open-cell foams from a range of materials, in- cluding high-temperature steel alloys. The low Reynolds number fluid properties of sintered steel alloy (FeCrAlY) foams were investigated in a previous study. The static flow resistance of the foams was modeled based on a cylinder and a sphere arranged in a periodic lattice at general incidence to the flow, with the resulting predictions correlating well to measurements. The application of the flow resis- tance in an acoustic model is the primary focus of the present study. The predic- tions for the static flow resistance of the sintered foams are first used in a theo- retical model to determine the characteristic impedances, as well as the propaga- tion constants of the foams. Subsequently, the predicted acoustic performance of the foams is compared to experimental results. Finally, the design space for a simple acoustic absorber incorporating sintered foams is examined, with the ef- fects of absorber size, foam selection, and foam spacing explored. 展开更多
关键词 metal foam sound ABSORPTION modeling EXPERIMENT ACOUSTIC design
原文传递
Research on attenuation characteristic of sound wave in coal or rock body 被引量:5
16
作者 聂百胜 何学秋 +1 位作者 李祥春 高虹 《Journal of Coal Science & Engineering(China)》 2007年第2期154-158,共5页
关键词 煤岩体 声波 衰减特性 吸收 散射 煤层气
下载PDF
Structure-Borne Sound Attenuation at Corner Interface with Dynamic Vibration Absorber Attached 被引量:1
17
作者 车驰东 陈端石 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第6期750-758,共9页
Structure-borne sound attenuation at corner interface of two plates with dynamic vibration absorber attached is investigated by wave approach.Equations governing transmission and reflection coefficients are deduced by... Structure-borne sound attenuation at corner interface of two plates with dynamic vibration absorber attached is investigated by wave approach.Equations governing transmission and reflection coefficients are deduced by introducing some non-dimensional coefficients,which help to reveal the physical sense inside and to simplify the analysis.Numerical investigation on vibration energy transmission of bending wave is carried out as well.The results from measurement and prediction show almost the same trends in the simplified experiment.It is found that energy transmission at corner interface depends greatly on whether the dynamic vibration absorber attached acts at resonance and is relatively lower right after the nature frequency of dynamic vibration absorber.Furthermore,the dynamic vibration absorber attached provides less energy transmission of bending wave than blocking mass at the end of "passing band". 展开更多
关键词 structure-borne sound dynamic vibration absorber non-dimensional coefficients wave approach corner interface
原文传递
Frequency-selective attenuation of sound propagation and reverberation in shallow water
18
《Acta Oceanologica Sinica》 SCIE CAS CSCD 1997年第4期475-489,共16页
Frequency-selective attenuation of sound propagaion and reverberation in shallow waterTXFrequency-selectiveat... Frequency-selective attenuation of sound propagaion and reverberation in shallow waterTXFrequency-selectiveattenuationofsoundp... 展开更多
关键词 attenuation sound REVERBERATION SHALLOW Frequency-selective
下载PDF
Improvement of Seafloor Positioning Through Correction of Sound Speed Profile Temporal Variation 被引量:3
19
作者 Miao Yu Kuijie Cai +1 位作者 Cuie Zheng Dajun Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1099-1101,共3页
Dear Editor,This letter proposes a high-precision seafloor transponder positioning method based on the correction of sound speed profile(SSP)temporal variation.In the proposed method,the ocean sound speed error is mod... Dear Editor,This letter proposes a high-precision seafloor transponder positioning method based on the correction of sound speed profile(SSP)temporal variation.In the proposed method,the ocean sound speed error is modeled as the temporal variation of a background SSP,and the linearized expression of the acoustic travel time with respect to the sound speed coefficient is derived based on the ray acoustic model.Moreover,the proposed method introduces the constraint of acoustic ranging observations between seafloor transponders and determines the weights of travel time and ranging observations using Akaike’s Bayesian information criterion(ABIC)to reduce the positioning error caused by the correlation between sound speed and position parameters.The experimental results in the South China Sea show that the proposed method performs better than the global navigation satellite system-acoustic ranging combined positioning solver(GARPOS)[1],in terms of rigid distance errors and long baseline positioning accuracy. 展开更多
关键词 OCEAN TRAVEL sound
下载PDF
Relationships of the internodal distance of biological tissue with its sound velocity and attenuation at high frequency in doublet mechanics
20
作者 程凯旋 吴融融 +3 位作者 刘晓宙 刘杰惠 龚秀芬 吴君汝 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期257-261,共5页
In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency(> 10 MHz) ultrasound. In this paper... In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency(> 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases. 展开更多
关键词 生物组织 力学关系 高频率 双峰 衰减 距离 节间 声速
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部