BACKGROUND Prolonged postoperative ileus(PPOI)delays the postoperative recovery of gastrointestinal function in patients with gastric cancer(GC),leading to longer hospitalization and higher healthcare expenditure.Howe...BACKGROUND Prolonged postoperative ileus(PPOI)delays the postoperative recovery of gastrointestinal function in patients with gastric cancer(GC),leading to longer hospitalization and higher healthcare expenditure.However,effective monitoring of gastrointestinal recovery in patients with GC remains challenging because of AIM To explore the risk factors for delayed postoperative bowel function recovery and evaluate bowel sound indicators collected via an intelligent auscultation system to guide clinical practice.METHODS This study included data from 120 patients diagnosed with GC who had undergone surgical treatment and postoperative bowel sound monitoring in the Department of General Surgery II at Shaanxi Provincial People's Hospital between January 2019 and January 2021.Among them,PPOI was reported in 33 cases.The patients were randomly divided into the training and validation cohorts.Significant variables from the training cohort were identified using univariate and multivariable analyses and were included in the model.RESULTS The analysis identified six potential variables associated with PPOI among the included participants.The incidence rate of PPOI was 27.5%.Age≥70 years,cTNM stage(Ⅰ and Ⅳ),preoperative hypoproteinemia,recovery time of bowel sounds(RTBS),number of bowel sounds(NBS),and frequency of bowel sounds(FBS)were independent risk factors for PPOI.The Bayesian model demonstrated good performance with internal validation:Training cohort[area under the curve(AUC)=0.880,accuracy=0.823,Brier score=0.139]and validation cohort(AUC=0.747,accuracy=0.690,Brier score=0.215).The model showed a good fit and calibration in the decision curve analysis,indicating a significant net benefit.CONCLUSION PPOI is a common complication following gastrectomy in patients with GC and is associated with age,cTNM stage,preoperative hypoproteinemia,and specific bowel sound-related indices(RTBS,NBS,and FBS).To facilitate early intervention and improve patient outcomes,clinicians should consider these factors,optimize preoperative nutritional status,and implement routine postoperative bowel sound monitoring.This study introduces an accessible machine learning model for predicting PPOI in patients with GC.展开更多
Video analytics is an integral part of surveillance cameras. Comparedto video analytics, audio analytics offers several benefits, includingless expensive equipment and upkeep expenses. Additionally, the volume ofthe a...Video analytics is an integral part of surveillance cameras. Comparedto video analytics, audio analytics offers several benefits, includingless expensive equipment and upkeep expenses. Additionally, the volume ofthe audio datastream is substantially lower than the video camera datastream,especially concerning real-time operating systems, which makes it lessdemanding of the data channel’s bandwidth needs. For instance, automaticlive video streaming from the site of an explosion and gunshot to the policeconsole using audio analytics technologies would be exceedingly helpful forurban surveillance. Technologies for audio analytics may also be used toanalyze video recordings and identify occurrences. This research proposeda deep learning model based on the combination of convolutional neuralnetwork (CNN) and recurrent neural network (RNN) known as the CNNRNNapproach. The proposed model focused on automatically identifyingpulse sounds that indicate critical situations in audio sources. The algorithm’saccuracy ranged from 95% to 81% when classifying noises from incidents,including gunshots, explosions, shattered glass, sirens, cries, and dog barking.The proposed approach can be applied to provide security for citizens in openand closed locations, like stadiums, underground areas, shopping malls, andother places.展开更多
Respiratory infections in children increase the risk of fatal lung disease,making effective identification and analysis of breath sounds essential.However,most studies have focused on adults ignoring pediatric patient...Respiratory infections in children increase the risk of fatal lung disease,making effective identification and analysis of breath sounds essential.However,most studies have focused on adults ignoring pediatric patients whose lungs are more vulnerable due to an imperfect immune system,and the scarcity of medical data has limited the development of deep learning methods toward reliability and high classification accuracy.In this work,we collected three types of breath sounds from children with normal(120 recordings),bronchitis(120 recordings),and pneumonia(120 recordings)at the posterior chest position using an off-the-shelf 3M electronic stethoscope.Three features were extracted from the wavelet denoised signal:spectrogram,mel-frequency cepstral coefficients(MFCCs),and Delta MFCCs.The recog-nition model is based on transfer learning techniques and combines fine-tuned MobileNetV2 and modified ResNet50 to classify breath sounds,along with software for displaying analysis results.Extensive experiments on a real dataset demonstrate the effectiveness and superior performance of the proposed model,with average accuracy,precision,recall,specificity and F1 scores of 97.96%,97.83%,97.89%,98.89%and 0.98,respectively,achieving superior performance with a small dataset.The proposed detection system,with a high-performance model and software,can help parents perform lung screening at home and also has the potential for a vast screening of children for lung disease.展开更多
Over the past two decades,research on the subject of noise pollution and urban soundscapes has seen significant growth[1,2].The goal of these studies was to gain a better understanding of the urban acoustic environmen...Over the past two decades,research on the subject of noise pollution and urban soundscapes has seen significant growth[1,2].The goal of these studies was to gain a better understanding of the urban acoustic environment by employing various methodologies and techniques to delve into the complexity of this topic.These research efforts have primarily revolved around two fundamental axes[3].On one hand,the first axis focused on combating noise pollution[4–6],emphasizing the reduction of unwanted sounds and compliance with sound levels set by environmental and health protection organizations[7,8].展开更多
How should we approach Die Kinder der Toten by the Austrian Nobel Prize winner Elfriede Jelinek today?And how does the 2019 film adaptation by the Nature Theatre of Oklahoma change the text’s reception through focus ...How should we approach Die Kinder der Toten by the Austrian Nobel Prize winner Elfriede Jelinek today?And how does the 2019 film adaptation by the Nature Theatre of Oklahoma change the text’s reception through focus on intermedial and intertextual elements?So far,the most insightful reviews have centered on the conceptual,contextual and textual-and thus also political aspects of this work.By focusing on intertextual and intermedial components,I hope to illustrate a few aspects of the novel that have yet to be analyzed in the scholarship on Jelinek.Drawing on Derrida’s Specters of Marx and on elements of sound studies,literature studies,and film studies,I hope to demonstrate how sound can have a significant spectral presence that connects with other literary texts and media,different world regions in the past,the present and the future.展开更多
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia...The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.展开更多
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is...As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.展开更多
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam...Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.展开更多
Auscultation is crucial for the diagnosis of respiratory system diseases.However,traditional stethoscopes have inherent limitations,such as inter-listener variability and subjectivity,and they cannot record respirator...Auscultation is crucial for the diagnosis of respiratory system diseases.However,traditional stethoscopes have inherent limitations,such as inter-listener variability and subjectivity,and they cannot record respiratory sounds for offline/retrospective diagnosis or remote prescriptions in telemedicine.The emergence of digital stethoscopes has overcome these limitations by allowing physicians to store and share respiratory sounds for consultation and education.On this basis,machine learning,particularly deep learning,enables the fully-automatic analysis of lung sounds that may pave the way for intelligent stethoscopes.This review thus aims to provide a comprehensive overview of deep learning algorithms used for lung sound analysis to emphasize the significance of artificial intelligence(AI)in this field.We focus on each component of deep learning-based lung sound analysis systems,including the task categories,public datasets,denoising methods,and,most importantly,existing deep learning methods,i.e.,the state-of-the-art approaches to convert lung sounds into two-dimensional(2D)spectrograms and use convolutional neural networks for the end-to-end recognition of respiratory diseases or abnormal lung sounds.Additionally,this review highlights current challenges in this field,including the variety of devices,noise sensitivity,and poor interpretability of deep models.To address the poor reproducibility and variety of deep learning in this field,this review also provides a scalable and flexible open-source framework that aims to standardize the algorithmic workflow and provide a solid basis for replication and future extension:https://github.com/contactless-healthcare/Deep-Learning-for-Lung-Sound-Analysis.展开更多
In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the s...In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.展开更多
As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba...As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.展开更多
A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ...A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.展开更多
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i...One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties.展开更多
Based on ab initio calculations,we utilize the mean-field potential approach with the quantum modification in conjunction with stress–strain relation to investigate the elastic anisotropies and sound velocities of hc...Based on ab initio calculations,we utilize the mean-field potential approach with the quantum modification in conjunction with stress–strain relation to investigate the elastic anisotropies and sound velocities of hcp and bcc Be under high-temperature(0–6000 K)and high-pressure(0–500 GPa)conditions.We propose a general definition of anisotropy for elastic moduli and sound velocities.Results suggest that the elastic anisotropy of Be is more significantly influenced by pressure than by temperature.The pressure-induced increase of c/a ratio makes the anisotropy of hcp Be significantly strengthen.Nevertheless,the hcp Be still exhibits smaller anisotropy than bcc Be in terms of elastic moduli and sound velocities.We suggest that measuring the anisotropy in shear sound velocity may be an approach to distinguishing the hcp–bcc phase transition under extreme conditions.展开更多
Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems ...Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems with mono-sized spherical particles,Voronoi tessellations can be utilized,while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles.However,research about polyhedral structures of non-spherical particle systems is limited.We utilize the discrete element method to simulate a system of ellipsoidal particles,defined by the equation(x a)2+(y1)2+(z 1/a)2=1,where a ranges from 1.1 to 2.0.The system is then dissected by using tangent planes at the contact points,and the geometric quantities of the resulting polyhedra in different shaped systems,such as surface area,volume,number of vertices,number of edges,and number of faces,are calculated.Meanwhile,the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method.The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra.The sound velocity of the system increases with the increase in a,peaking at a=1.3,and then decreases as a continues to increase.The average volume,surface area,number of vertices,number of edges,and number of faces of the polyhedra decrease with the increase in sound velocity.That is,these quantities initially decrease with the increase in a,reaching minima at a=1.3,and then increase with further increase of a.The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.展开更多
The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean ...The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean grain size,mass density,bulk density,salinity,porosity,permeability,pore size and mineralogical composition.Acoustic properties,including sound speed and attenuation,in the high frequency range of 90-170 kHz were analyzed.A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments.The standard deviation of mean sound speed in fresh water was 0.75 m/s,and attenuation was observed in the range of 0.43 to 0.61 dB/m.The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s,respectively.Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments.Sound velocity variation within sandy sediment is low,consistent with expected results,and smaller than the predicted uncertainty.However,clay sediment exhibited a positive linear correlation and low sound speed variation.Attenuation increased linearly with frequency for both sediments.Finally,the laboratory results were validated by using the Biot−Stoll model.The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot−Stoll model.Measured attenuation aligned more with Biot−Stoll model predictions due to improved permeability,tortuosity and pore size parameter fitting.展开更多
High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for ...High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for calculating highvertical-resolution wind vectors excessively smooths the data, resulting in significant underestimation of the calculated kinetic energy of gravity waves compared to similar products from other countries, which greatly limits the effective utilization of the data. To address this issue, this study proposes a novel method to calculate high-vertical-resolution wind vectors that utilizes the elevation angle, azimuth angle, and slant range from L-band radar. In order to obtain wind data with a stable quality, a two-step automatic quality control procedure, including the RMSE-F(root-mean-square error F) test and elemental consistency test are first applied to the slant range data, to eliminate continuous erroneous data caused by unstable signals or radar malfunctions. Then, a wind calculation scheme based on a sliding second-order polynomial fitting is utilized to derive the high-vertical-resolution radiosonde wind vectors. The evaluation results demonstrate that the wind data obtained through the proposed method show a high level of consistency with the high-resolution wind data observed using the Vaisala Global Positioning System and the data observed by the new Beidou Navigation Sounding System. The calculation of the kinetic energy of gravity waves in the recalculated wind data also reaches a level comparable to the Vaisala observations.展开更多
The construction of major marine infrastructure projects and the exploration and development of deep-sea mineral resources require fine imaging of seabed strata and structures.The highresolution marine seismic explora...The construction of major marine infrastructure projects and the exploration and development of deep-sea mineral resources require fine imaging of seabed strata and structures.The highresolution marine seismic exploration based on a high broadband sparker source is an important approach to reveal seabed stratum and reservoir structure,and identify geohazard.To optimize the performance of sparker seismic source,we investigated the electro-acoustic characteristics of spark discharge under conditions of different charging voltages and electrode numbers.Results show that the sound source level increased with the increase of the charging voltage,whereas the main frequency decreased when the charging voltage increases.In addition,it was found that the charging capacitance had more obvious influence on the main frequency than the sound source level did.Although the load energy decreased with increasing electrode number,the sound source level still increased but the main frequency decreased.Meanwhile,the primary to bubble(P/B)ratio increased with the increase of the electrode number.To gain a deeper insight into the electro-acoustic characteristics,we investigate the relationship between sound source level and power peak,from which a good correlation was observed.A more practical statistical analysis on the rise rate of current was processed,and a perfect logarithmic function was derived.Furthermore,we found that the main frequency was most possibly subjected to the electrical energy,especially the charging energy per electrode.The results indicate that the charging energy per electrode less than 10 J could increase the main frequency to above 300 Hz.At last,the main frequency could be reduced to 20 Hz when the charging energy of a single-electrode discharge was enhanced to over 4 kJ.This study shall be helpful in developing a sparker seismic source and improving the performance for marine engineering exploration and geohazard assessment.展开更多
Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the ...Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption.展开更多
Shipboard radiosonde soundings are important for detecting and quantifying the multiscale variability of atmosphere-ocean interactions associated with mass exchanges.This study evaluated the accuracies of shipboard Gl...Shipboard radiosonde soundings are important for detecting and quantifying the multiscale variability of atmosphere-ocean interactions associated with mass exchanges.This study evaluated the accuracies of shipboard Global Positioning System(GPS)soundings in the eastern tropical Indian Ocean and South China Sea through a simultaneous balloon-borne inter-comparison of different radiosonde types.Our results indicate that the temperature and relative humidity(RH)measurements of GPS-TanKong(GPS-TK)radiosonde(used at most stations before 2012)have larger biases than those of ChangFeng-06-A(CF-06-A)radiosonde(widely used in current observation)when compared to reference data from Vaisala RS92-SGP radiosonde,with a warm bias of 5℃and dry bias of 10%during daytimes,and a cooling bias of-0.8℃and a moist bias of 6%during nighttime.These systematic biases are primarily attributed to the radiation effects and altitude deviation.An empirical correction algorithm was developed to retrieve the atmospheric temperature and RH profiles.The corrected profiles agree well with that of RS92-SGP,except for uncertainties of CF-06-A in the stratosphere.These correction algorithms were applied to the GPS-TK historical sounding records,reducing biases in the corrected temperature and RH profiles when compared to radio occultation data.The correction of GPS-TK historical records illustrated an improvement in capturing the marine atmospheric structure,with more accurate atmospheric boundary layer height,convective available potential energy,and convective inhibition in the tropical ocean.This study contributes significantly to improving the quality of GPS radiosonde soundings and promotes the sharing of observation in the eastern tropical Indian Ocean and South China Sea.展开更多
基金Supported by Key Research and Development Program of Shaanxi,No.2020GXLH-Y-019,No.2022KXJ-141,and No.2023-GHYB-11Innovation Capability Support Program of Shaanxi,No.2019GHJD-14 and No.2021TD-40Science and Technology Program of Xi'an,No.23ZDCYJSGG0037-2022.
文摘BACKGROUND Prolonged postoperative ileus(PPOI)delays the postoperative recovery of gastrointestinal function in patients with gastric cancer(GC),leading to longer hospitalization and higher healthcare expenditure.However,effective monitoring of gastrointestinal recovery in patients with GC remains challenging because of AIM To explore the risk factors for delayed postoperative bowel function recovery and evaluate bowel sound indicators collected via an intelligent auscultation system to guide clinical practice.METHODS This study included data from 120 patients diagnosed with GC who had undergone surgical treatment and postoperative bowel sound monitoring in the Department of General Surgery II at Shaanxi Provincial People's Hospital between January 2019 and January 2021.Among them,PPOI was reported in 33 cases.The patients were randomly divided into the training and validation cohorts.Significant variables from the training cohort were identified using univariate and multivariable analyses and were included in the model.RESULTS The analysis identified six potential variables associated with PPOI among the included participants.The incidence rate of PPOI was 27.5%.Age≥70 years,cTNM stage(Ⅰ and Ⅳ),preoperative hypoproteinemia,recovery time of bowel sounds(RTBS),number of bowel sounds(NBS),and frequency of bowel sounds(FBS)were independent risk factors for PPOI.The Bayesian model demonstrated good performance with internal validation:Training cohort[area under the curve(AUC)=0.880,accuracy=0.823,Brier score=0.139]and validation cohort(AUC=0.747,accuracy=0.690,Brier score=0.215).The model showed a good fit and calibration in the decision curve analysis,indicating a significant net benefit.CONCLUSION PPOI is a common complication following gastrectomy in patients with GC and is associated with age,cTNM stage,preoperative hypoproteinemia,and specific bowel sound-related indices(RTBS,NBS,and FBS).To facilitate early intervention and improve patient outcomes,clinicians should consider these factors,optimize preoperative nutritional status,and implement routine postoperative bowel sound monitoring.This study introduces an accessible machine learning model for predicting PPOI in patients with GC.
基金funded by the project,“Design and implementation of real-time safety ensuring system in the indoor environment by applying machine learning techniques”.IRN:AP14971555.
文摘Video analytics is an integral part of surveillance cameras. Comparedto video analytics, audio analytics offers several benefits, includingless expensive equipment and upkeep expenses. Additionally, the volume ofthe audio datastream is substantially lower than the video camera datastream,especially concerning real-time operating systems, which makes it lessdemanding of the data channel’s bandwidth needs. For instance, automaticlive video streaming from the site of an explosion and gunshot to the policeconsole using audio analytics technologies would be exceedingly helpful forurban surveillance. Technologies for audio analytics may also be used toanalyze video recordings and identify occurrences. This research proposeda deep learning model based on the combination of convolutional neuralnetwork (CNN) and recurrent neural network (RNN) known as the CNNRNNapproach. The proposed model focused on automatically identifyingpulse sounds that indicate critical situations in audio sources. The algorithm’saccuracy ranged from 95% to 81% when classifying noises from incidents,including gunshots, explosions, shattered glass, sirens, cries, and dog barking.The proposed approach can be applied to provide security for citizens in openand closed locations, like stadiums, underground areas, shopping malls, andother places.
基金funded by the Scientific Research Starting Foundation of Hainan University(KYQD1882)the Flexible Introduction Scientific Research Starting Foundation of Hainan University(2020.11-2025.10).
文摘Respiratory infections in children increase the risk of fatal lung disease,making effective identification and analysis of breath sounds essential.However,most studies have focused on adults ignoring pediatric patients whose lungs are more vulnerable due to an imperfect immune system,and the scarcity of medical data has limited the development of deep learning methods toward reliability and high classification accuracy.In this work,we collected three types of breath sounds from children with normal(120 recordings),bronchitis(120 recordings),and pneumonia(120 recordings)at the posterior chest position using an off-the-shelf 3M electronic stethoscope.Three features were extracted from the wavelet denoised signal:spectrogram,mel-frequency cepstral coefficients(MFCCs),and Delta MFCCs.The recog-nition model is based on transfer learning techniques and combines fine-tuned MobileNetV2 and modified ResNet50 to classify breath sounds,along with software for displaying analysis results.Extensive experiments on a real dataset demonstrate the effectiveness and superior performance of the proposed model,with average accuracy,precision,recall,specificity and F1 scores of 97.96%,97.83%,97.89%,98.89%and 0.98,respectively,achieving superior performance with a small dataset.The proposed detection system,with a high-performance model and software,can help parents perform lung screening at home and also has the potential for a vast screening of children for lung disease.
文摘Over the past two decades,research on the subject of noise pollution and urban soundscapes has seen significant growth[1,2].The goal of these studies was to gain a better understanding of the urban acoustic environment by employing various methodologies and techniques to delve into the complexity of this topic.These research efforts have primarily revolved around two fundamental axes[3].On one hand,the first axis focused on combating noise pollution[4–6],emphasizing the reduction of unwanted sounds and compliance with sound levels set by environmental and health protection organizations[7,8].
文摘How should we approach Die Kinder der Toten by the Austrian Nobel Prize winner Elfriede Jelinek today?And how does the 2019 film adaptation by the Nature Theatre of Oklahoma change the text’s reception through focus on intermedial and intertextual elements?So far,the most insightful reviews have centered on the conceptual,contextual and textual-and thus also political aspects of this work.By focusing on intertextual and intermedial components,I hope to illustrate a few aspects of the novel that have yet to be analyzed in the scholarship on Jelinek.Drawing on Derrida’s Specters of Marx and on elements of sound studies,literature studies,and film studies,I hope to demonstrate how sound can have a significant spectral presence that connects with other literary texts and media,different world regions in the past,the present and the future.
基金supported by the National Natural Science Foundation of China(Grant No.42004030)Basic Scientific Fund for National Public Research Institutes of China(Grant No.2022S03)+1 种基金Science and Technology Innovation Project(LSKJ202205102)funded by Laoshan Laboratory,and the National Key Research and Development Program of China(2020YFB0505805).
文摘The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.
基金the National Natural Science Foundation of China(32201338)Science Technology Program from the Forestry Administration of Guangdong Province(2021KJCX017)+1 种基金Guangzhou Municipal Science and Technology Bureau Program(2023A04J0086)Shenzhen Key Laboratory of Southern Subtropical Plant Diversity。
文摘As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
基金supported by the National Natural Science Foundation of China(Nos.52171327,11991032,52201386,and 51805537)。
文摘Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.
基金This work is supported by the National Key Research and Development Program of China(2022YFC2407800)the General Program of National Natural Science Foundation of China(62271241)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2023A1515012983)the Shenzhen Fundamental Research Program(JCYJ20220530112601003).
文摘Auscultation is crucial for the diagnosis of respiratory system diseases.However,traditional stethoscopes have inherent limitations,such as inter-listener variability and subjectivity,and they cannot record respiratory sounds for offline/retrospective diagnosis or remote prescriptions in telemedicine.The emergence of digital stethoscopes has overcome these limitations by allowing physicians to store and share respiratory sounds for consultation and education.On this basis,machine learning,particularly deep learning,enables the fully-automatic analysis of lung sounds that may pave the way for intelligent stethoscopes.This review thus aims to provide a comprehensive overview of deep learning algorithms used for lung sound analysis to emphasize the significance of artificial intelligence(AI)in this field.We focus on each component of deep learning-based lung sound analysis systems,including the task categories,public datasets,denoising methods,and,most importantly,existing deep learning methods,i.e.,the state-of-the-art approaches to convert lung sounds into two-dimensional(2D)spectrograms and use convolutional neural networks for the end-to-end recognition of respiratory diseases or abnormal lung sounds.Additionally,this review highlights current challenges in this field,including the variety of devices,noise sensitivity,and poor interpretability of deep models.To address the poor reproducibility and variety of deep learning in this field,this review also provides a scalable and flexible open-source framework that aims to standardize the algorithmic workflow and provide a solid basis for replication and future extension:https://github.com/contactless-healthcare/Deep-Learning-for-Lung-Sound-Analysis.
基金Project(52202455)supported by the National Natural Science Foundation of ChinaProject(23A0017)supported by the Key Project of Scientific Research Project of Hunan Provincial Department of Education,China。
文摘In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.
基金supported by China Postdoctoral Science Foundation(2019M651240)National Natural Science Foundation of China(31670559).
文摘As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172339 and 11732005)the Beijing Natural Science Foundation of China (No. 1222006)。
文摘A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12374202 and 12004001)Anhui Projects(Grant Nos.2022AH020009,S020218016,and Z010118169)+1 种基金Hefei City(Grant No.Z020132009)Anhui University(start-up fund)。
文摘One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23A_(2)0537,U2230401,and 52371174)Funding of National Key Laboratory of Computational Physics.
文摘Based on ab initio calculations,we utilize the mean-field potential approach with the quantum modification in conjunction with stress–strain relation to investigate the elastic anisotropies and sound velocities of hcp and bcc Be under high-temperature(0–6000 K)and high-pressure(0–500 GPa)conditions.We propose a general definition of anisotropy for elastic moduli and sound velocities.Results suggest that the elastic anisotropy of Be is more significantly influenced by pressure than by temperature.The pressure-induced increase of c/a ratio makes the anisotropy of hcp Be significantly strengthen.Nevertheless,the hcp Be still exhibits smaller anisotropy than bcc Be in terms of elastic moduli and sound velocities.We suggest that measuring the anisotropy in shear sound velocity may be an approach to distinguishing the hcp–bcc phase transition under extreme conditions.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12262005,11962003,and 11602062)the Postgraduate Education Reform and Quality Improvement Project of Henan Province(Grant No.YJS2024AL138)the Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX096Y).
文摘Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems with mono-sized spherical particles,Voronoi tessellations can be utilized,while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles.However,research about polyhedral structures of non-spherical particle systems is limited.We utilize the discrete element method to simulate a system of ellipsoidal particles,defined by the equation(x a)2+(y1)2+(z 1/a)2=1,where a ranges from 1.1 to 2.0.The system is then dissected by using tangent planes at the contact points,and the geometric quantities of the resulting polyhedra in different shaped systems,such as surface area,volume,number of vertices,number of edges,and number of faces,are calculated.Meanwhile,the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method.The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra.The sound velocity of the system increases with the increase in a,peaking at a=1.3,and then decreases as a continues to increase.The average volume,surface area,number of vertices,number of edges,and number of faces of the polyhedra decrease with the increase in sound velocity.That is,these quantities initially decrease with the increase in a,reaching minima at a=1.3,and then increase with further increase of a.The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.
基金financially supported by the National Natural Science Foundation of China(Grant No.12074088).
文摘The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean grain size,mass density,bulk density,salinity,porosity,permeability,pore size and mineralogical composition.Acoustic properties,including sound speed and attenuation,in the high frequency range of 90-170 kHz were analyzed.A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments.The standard deviation of mean sound speed in fresh water was 0.75 m/s,and attenuation was observed in the range of 0.43 to 0.61 dB/m.The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s,respectively.Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments.Sound velocity variation within sandy sediment is low,consistent with expected results,and smaller than the predicted uncertainty.However,clay sediment exhibited a positive linear correlation and low sound speed variation.Attenuation increased linearly with frequency for both sediments.Finally,the laboratory results were validated by using the Biot−Stoll model.The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot−Stoll model.Measured attenuation aligned more with Biot−Stoll model predictions due to improved permeability,tortuosity and pore size parameter fitting.
基金funded by an NSFC Major Project (Grant No. 42090033)the China Meteorological Administration Youth Innovation Team “High-Value Climate Change Data Product Development and Application Services”(Grant No. CMA2023QN08)the National Meteorological Information Centre Surplus Funds Program (Grant NMICJY202310)。
文摘High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for calculating highvertical-resolution wind vectors excessively smooths the data, resulting in significant underestimation of the calculated kinetic energy of gravity waves compared to similar products from other countries, which greatly limits the effective utilization of the data. To address this issue, this study proposes a novel method to calculate high-vertical-resolution wind vectors that utilizes the elevation angle, azimuth angle, and slant range from L-band radar. In order to obtain wind data with a stable quality, a two-step automatic quality control procedure, including the RMSE-F(root-mean-square error F) test and elemental consistency test are first applied to the slant range data, to eliminate continuous erroneous data caused by unstable signals or radar malfunctions. Then, a wind calculation scheme based on a sliding second-order polynomial fitting is utilized to derive the high-vertical-resolution radiosonde wind vectors. The evaluation results demonstrate that the wind data obtained through the proposed method show a high level of consistency with the high-resolution wind data observed using the Vaisala Global Positioning System and the data observed by the new Beidou Navigation Sounding System. The calculation of the kinetic energy of gravity waves in the recalculated wind data also reaches a level comparable to the Vaisala observations.
基金Supported by the National Natural Science Foundation of China(No.42276195)the Natural Science Foundation of Zhejiang Province(No.LQ22D060006)the Science Foundation of Zhejiang Sci-Tech University(No.21022092-Y)。
文摘The construction of major marine infrastructure projects and the exploration and development of deep-sea mineral resources require fine imaging of seabed strata and structures.The highresolution marine seismic exploration based on a high broadband sparker source is an important approach to reveal seabed stratum and reservoir structure,and identify geohazard.To optimize the performance of sparker seismic source,we investigated the electro-acoustic characteristics of spark discharge under conditions of different charging voltages and electrode numbers.Results show that the sound source level increased with the increase of the charging voltage,whereas the main frequency decreased when the charging voltage increases.In addition,it was found that the charging capacitance had more obvious influence on the main frequency than the sound source level did.Although the load energy decreased with increasing electrode number,the sound source level still increased but the main frequency decreased.Meanwhile,the primary to bubble(P/B)ratio increased with the increase of the electrode number.To gain a deeper insight into the electro-acoustic characteristics,we investigate the relationship between sound source level and power peak,from which a good correlation was observed.A more practical statistical analysis on the rise rate of current was processed,and a perfect logarithmic function was derived.Furthermore,we found that the main frequency was most possibly subjected to the electrical energy,especially the charging energy per electrode.The results indicate that the charging energy per electrode less than 10 J could increase the main frequency to above 300 Hz.At last,the main frequency could be reduced to 20 Hz when the charging energy of a single-electrode discharge was enhanced to over 4 kJ.This study shall be helpful in developing a sparker seismic source and improving the performance for marine engineering exploration and geohazard assessment.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1404500)the National Natural Science Foundation of China(Grant Nos.T2222024 and 12034005)the STCSM Science and Technology Innovation Plan of Shanghai Science and Technology Commission(Grant Nos.20ZR1404200 and 21JC1400300)。
文摘Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption.
基金The Second Tibetan Plateau Scientific Expedition and Research Program under contract No.2019QZKK0102-02the National Natural Science Foundation of China under contract Nos 42230402,92158204,42176026,42076201,41049903,41149908,41249906,41249907,and 41249910+2 种基金the Guangdong Basic and Applied Basic Research Foundation under contract No.2022A1515240069the Marine Economic Development Special Program of Guangdong Province(Six Major Marine Industries):Research and Demonstration of Critical Technologies for Comprehensive Prevention and Control of Natural Disaster in Offshore Wind Farms,China under contract No.29[2023]the Fund of Fujian Provincial Key Laboratory of Marine Physical and Geological Processes under contract No.KLMPG-22-02.
文摘Shipboard radiosonde soundings are important for detecting and quantifying the multiscale variability of atmosphere-ocean interactions associated with mass exchanges.This study evaluated the accuracies of shipboard Global Positioning System(GPS)soundings in the eastern tropical Indian Ocean and South China Sea through a simultaneous balloon-borne inter-comparison of different radiosonde types.Our results indicate that the temperature and relative humidity(RH)measurements of GPS-TanKong(GPS-TK)radiosonde(used at most stations before 2012)have larger biases than those of ChangFeng-06-A(CF-06-A)radiosonde(widely used in current observation)when compared to reference data from Vaisala RS92-SGP radiosonde,with a warm bias of 5℃and dry bias of 10%during daytimes,and a cooling bias of-0.8℃and a moist bias of 6%during nighttime.These systematic biases are primarily attributed to the radiation effects and altitude deviation.An empirical correction algorithm was developed to retrieve the atmospheric temperature and RH profiles.The corrected profiles agree well with that of RS92-SGP,except for uncertainties of CF-06-A in the stratosphere.These correction algorithms were applied to the GPS-TK historical sounding records,reducing biases in the corrected temperature and RH profiles when compared to radio occultation data.The correction of GPS-TK historical records illustrated an improvement in capturing the marine atmospheric structure,with more accurate atmospheric boundary layer height,convective available potential energy,and convective inhibition in the tropical ocean.This study contributes significantly to improving the quality of GPS radiosonde soundings and promotes the sharing of observation in the eastern tropical Indian Ocean and South China Sea.