There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly eas...There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.展开更多
The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key pro...The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.展开更多
Qiangtang Massif is located in the hinterland of Qinghai—Tibet plateau, which belong to the mid\|east section of Tethys Tectonic Domain.1 Features of the whole texture and structure of Qiangtang massif By synthetic a...Qiangtang Massif is located in the hinterland of Qinghai—Tibet plateau, which belong to the mid\|east section of Tethys Tectonic Domain.1 Features of the whole texture and structure of Qiangtang massif By synthetic analysis of gravity,magnetic field,MT,seismic surveying,etc. Geophysical data, the massif, lied in the tectonic setting and geodynamic setting mingled by the south,north tectonic belts, have the features of massif,basin and tectonic belt three forming an organic whole,multi\|degree coupling in plane and section with division of region in south\|north trend,division of block\|fault in east\|west trend,division of sphere\|layer in vertical direction. (1) Belting in south\|north trend: Qiangtang massif could be divided into four units from north to south, that is north edge doming zone, west part doming area,Qiangtang Basin and south edge doming zone. Qiangtang Basin also can be divided into four tectonic units—north Qiangtang down\|warping region, middle downing zone, south Qiangtang down\|warping and east part slope region. The near east\|west trend tectonic zones are well developed. There is aero\|magnetic anomaly distributed in belting with east\|west trend but also concentrated in section. Gravity anomaly is high in the south\|west part and low in the northeast part. Inter\|crust low resistance layer alternately distributed with high and low belting of sou th\|north trend in plane.展开更多
文摘There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)(Grant Nos.2019QZKK0703 and 2019QZKK0702)National Science Foundation of China(Grant Nos.91755103 and 41872240)+1 种基金Ministry of Science and Technology of China(Grant No.2016YFC0600304)the Chinese Geological Survey Project(Grant Nos.DD20190060,DD20190370 and DD20190057)。
文摘The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.
文摘Qiangtang Massif is located in the hinterland of Qinghai—Tibet plateau, which belong to the mid\|east section of Tethys Tectonic Domain.1 Features of the whole texture and structure of Qiangtang massif By synthetic analysis of gravity,magnetic field,MT,seismic surveying,etc. Geophysical data, the massif, lied in the tectonic setting and geodynamic setting mingled by the south,north tectonic belts, have the features of massif,basin and tectonic belt three forming an organic whole,multi\|degree coupling in plane and section with division of region in south\|north trend,division of block\|fault in east\|west trend,division of sphere\|layer in vertical direction. (1) Belting in south\|north trend: Qiangtang massif could be divided into four units from north to south, that is north edge doming zone, west part doming area,Qiangtang Basin and south edge doming zone. Qiangtang Basin also can be divided into four tectonic units—north Qiangtang down\|warping region, middle downing zone, south Qiangtang down\|warping and east part slope region. The near east\|west trend tectonic zones are well developed. There is aero\|magnetic anomaly distributed in belting with east\|west trend but also concentrated in section. Gravity anomaly is high in the south\|west part and low in the northeast part. Inter\|crust low resistance layer alternately distributed with high and low belting of sou th\|north trend in plane.