The provenance and tectonic implications of Late Paleozoic sedimentary rocks in the South Qinling Belt(SQB) provide important clues for understanding the timing and mechanism of the collision between North China Block...The provenance and tectonic implications of Late Paleozoic sedimentary rocks in the South Qinling Belt(SQB) provide important clues for understanding the timing and mechanism of the collision between North China Block(NCB) and South China Block(SCB).Here we report new LAICP-MS zircon U-Pb ages and geochemical composition of metasedimentary rocks from the Foping area in the SQB.The results indicate that the depositional age of the Wenquan Group can be limited to the Early Devonian by the youngest U-Pb age of 398 Ma,whereas those of the quartz schist from the Changjiaoba Group could be constrained after the Carboniferous by the youngest206Pb/238U peak age of 306 Ma.Therefore,much of the previously-assumed “Neoarchaean or Paleoproterozoic” strata,including the Wenquan and Changjiaoba groups,were actually deposited in the Late Paleozoic.Based on analysis and comparison of the detrital zircon ages of the Devonian tectonic units in the SQB,we found that most prominent peak ages of detrital zircons from metasedimentary rocks in the Foping area shared similar characteristics with others.They mainly derived from the North Qinling Belt and South Qinling Belt-Yangtze Block,with a minor source probably from the North China Block,implying that the Shangdan Ocean between NCB and SCB had closed in the Early Devonian.Combined with regional geological background and geochemical data,we inferred that these Devonian strata formed in the foreland basin after the amalgamation of the North China Block and South China Block.展开更多
Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = +3.28― +5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/20...Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = +3.28― +5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, ?8/4=21.18―774.43, ?7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.展开更多
South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui g...South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.展开更多
The Hejiazhuang pluton is located in the South Qinling Tectonic Belt (SQTB) in the north side of the MianxianLueyang Su ture Zone, and consists dominantly of granodiorites. LAICPMS zircon UPb dating and LuHf isotopi...The Hejiazhuang pluton is located in the South Qinling Tectonic Belt (SQTB) in the north side of the MianxianLueyang Su ture Zone, and consists dominantly of granodiorites. LAICPMS zircon UPb dating and LuHf isotopic analyses reveal that these granodiorites of the Hejiazhaung pluton emplaced at 248 Ma, and show a large variation in zircon eHt(t) values from 4.8 to 8.8. These granodiorite samples are attributed to highK to midK calcalkaline series, and characterized by high SiO2 (66.6±70.0%), A1203 (15.04±16.10%) and Na20 (3.74±4.33%) concentrations, with high Mg# (54.2±61.7). All samples have high Sr (627±751 ppm), Cr (553±73 ppm) and Ni (17.2182 ppm), but low Y (5.42-8.41 ppm) and Yb (0.59-0.74 ppm) concentrations with high Sr/Y ratios (84.90±120.66). They also display highly fractionated REE patterns with (La/Yb)N ratios of 18.93-4.0 and positive Eu anomalies (0"Eu=1.102.22) in the chondritenormalized REE patterns. In the primitive mantle normalized spidergrams, these samples exhibit enrichment in LILEs but depletion in Nb, Ta, P and Ti. These geochemical fea tures indicate that the granodioritic magma of the Hejiazhuang pluton was derived from the partial melting of hybrid sources comprising the subducted oceanic slab and sediments, and the melts were polluted by the mantle wedge materials during their ascent. The emplacement ages and petrogenesis of the Hejiazhuang pluton prove that the initial subduction of the Mianlue oceanic crust occurred at 248 Ma ago, and the SQTB was still under subduction tectonic setting in the Early Triassic.展开更多
The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north ...The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north belt and south belt are composed of abyssal mudstone and siltstone, and limestone, chert and basic and ultrabasic rock blocks. The middle belt consists of a few limestone blocks and turbidites, which were formed in the trench environment. At present, in the Baishuijiang Group, many fossils were found in matrix and rock blocks, the fossils contain the Cambrian small shell fossils(Xiao, 1992;Tao et al., 1992), Silurian chitinozoas, scolecodonts and spores, and Ordovician graptolites, and middle Devonian Coral and conodonts in limestone and chert blocks(Wang et al., 2011a), and Permian radiolarians in the matrix(Wang et al., 2007). The volcanic rock blocks have undergone different degree of metamorphism. Their geochemical characteristics indicate that the rocks are similar to oceanic island arc and seamount(Wang et al., 2009), and SHRIMP U-Pb dating yielded ages from Neoproterozoic to early Paleozoic(Yan et al., 2007;Wang et al., 2009, 2011b). Therefore, comprehensive analysis of regional data, the Baishuijiang group is an accretionary complex which was consisted of matrix and blocks, and was finally formed during Permian-Triassic.展开更多
The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonia...The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonian corals,conodonts,and other fossil fragments within the limestone blocks were discovered in recent field investigations,indicating that the Dabao Formation was formed during late Paleozoic.Combined with other regional geological data,the Dabao Formation in the Southern Qinling Orogenic Belt is considered to be a late Paleozoic or early Mesozoic accretionary complex.展开更多
The topographic evolution of continental orogens is important for understanding continental orogenic processes,geodynamic mechanisms,and climatic and environmental changes.The Qinling Orogen is a major orogenic belt i...The topographic evolution of continental orogens is important for understanding continental orogenic processes,geodynamic mechanisms,and climatic and environmental changes.The Qinling Orogen is a major orogenic belt in China,and its uplift history can provide insights into the tectonic configuration and geodynamics of China and East Asia.Previous studies have shown that the Dabashan and Micangshan-Hannan Dome(MHD)in the South Qinling orogenic belt were uplifted during the Mesozoic.However,the magnitude of the uplift remains unclear.In this study,using sedimentary records in the northern Sichuan Basin and lithospheric flexural modeling,we estimated the magnitude of Mesozoic uplift of the Dabashan and MHD,along with the effective elastic thickness(Te)of the Sichuan Basin.The Dabashan and MHD were uplifted by approximately 1220 and 880 m during the Middle Jurassic and Early Cretaceous,respectively.Therefore,we propose that the present-day elevation of the Dabashan and MHD is primarily the result of Mesozoic uplift.The differences in the duration and amount of uplift between different tectonic units indicate that the uplift processes and driving mechanisms in the South Qinling orogenic belt were different in the Mesozoic and Cenozoic.Mesozoic uplift was the result of convergence of the North China and South China blocks advanced from east to west,whereas Cenozoic uplift was driven by ongoing indentation of the Indian Plate into Eurasia from southwest to northeast.The lithospheric strength of the northern Sichuan Basin was weakened from the Middle Jurassic to Early Cretaceous,and Tedecreased from 73 to 57 km.This may have been caused by the flexure-related bending stresses in the lithosphere that developed due to the large topographic loading.展开更多
基金jointly supported by the National Natural Science Foundation of China (No.41890831)China Postdoctoral Science Foundation (No.2022M712571)MOST Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University。
文摘The provenance and tectonic implications of Late Paleozoic sedimentary rocks in the South Qinling Belt(SQB) provide important clues for understanding the timing and mechanism of the collision between North China Block(NCB) and South China Block(SCB).Here we report new LAICP-MS zircon U-Pb ages and geochemical composition of metasedimentary rocks from the Foping area in the SQB.The results indicate that the depositional age of the Wenquan Group can be limited to the Early Devonian by the youngest U-Pb age of 398 Ma,whereas those of the quartz schist from the Changjiaoba Group could be constrained after the Carboniferous by the youngest206Pb/238U peak age of 306 Ma.Therefore,much of the previously-assumed “Neoarchaean or Paleoproterozoic” strata,including the Wenquan and Changjiaoba groups,were actually deposited in the Late Paleozoic.Based on analysis and comparison of the detrital zircon ages of the Devonian tectonic units in the SQB,we found that most prominent peak ages of detrital zircons from metasedimentary rocks in the Foping area shared similar characteristics with others.They mainly derived from the North Qinling Belt and South Qinling Belt-Yangtze Block,with a minor source probably from the North China Block,implying that the Shangdan Ocean between NCB and SCB had closed in the Early Devonian.Combined with regional geological background and geochemical data,we inferred that these Devonian strata formed in the foreland basin after the amalgamation of the North China Block and South China Block.
基金Supported jointly by the National Natural Science Foundation of China (Grant Nos. 40372039, 40521001)Ministry of Education of China (Grant Nos. IRT0441 and B07039)the State Key Laboratory of Geological Progresses and Mineral Re-sources (Grant No. MGMR2002-27)
文摘Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = +3.28― +5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, ?8/4=21.18―774.43, ?7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.
基金provided by the National Scientific and Tecnological Support Program of China(Grant No:2006BAB01A11)
文摘South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.
基金supported by National Key Technology R&D Program(Grant Nos.2011BAB04B05,2006BAB01A11)National Natural Science Foundation of China(Grant Nos.41072143,41072169)
文摘The Hejiazhuang pluton is located in the South Qinling Tectonic Belt (SQTB) in the north side of the MianxianLueyang Su ture Zone, and consists dominantly of granodiorites. LAICPMS zircon UPb dating and LuHf isotopic analyses reveal that these granodiorites of the Hejiazhaung pluton emplaced at 248 Ma, and show a large variation in zircon eHt(t) values from 4.8 to 8.8. These granodiorite samples are attributed to highK to midK calcalkaline series, and characterized by high SiO2 (66.6±70.0%), A1203 (15.04±16.10%) and Na20 (3.74±4.33%) concentrations, with high Mg# (54.2±61.7). All samples have high Sr (627±751 ppm), Cr (553±73 ppm) and Ni (17.2182 ppm), but low Y (5.42-8.41 ppm) and Yb (0.59-0.74 ppm) concentrations with high Sr/Y ratios (84.90±120.66). They also display highly fractionated REE patterns with (La/Yb)N ratios of 18.93-4.0 and positive Eu anomalies (0"Eu=1.102.22) in the chondritenormalized REE patterns. In the primitive mantle normalized spidergrams, these samples exhibit enrichment in LILEs but depletion in Nb, Ta, P and Ti. These geochemical fea tures indicate that the granodioritic magma of the Hejiazhuang pluton was derived from the partial melting of hybrid sources comprising the subducted oceanic slab and sediments, and the melts were polluted by the mantle wedge materials during their ascent. The emplacement ages and petrogenesis of the Hejiazhuang pluton prove that the initial subduction of the Mianlue oceanic crust occurred at 248 Ma ago, and the SQTB was still under subduction tectonic setting in the Early Triassic.
基金financially supported by the National Nature Science Foundation of China(Grant No.41772233,41272220)the China Geological Survey(Grant No.DD20189613)grants from the Institute of Geology,Chinese Academy of Geological Sciences(Grant No.J1708)
文摘The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north belt and south belt are composed of abyssal mudstone and siltstone, and limestone, chert and basic and ultrabasic rock blocks. The middle belt consists of a few limestone blocks and turbidites, which were formed in the trench environment. At present, in the Baishuijiang Group, many fossils were found in matrix and rock blocks, the fossils contain the Cambrian small shell fossils(Xiao, 1992;Tao et al., 1992), Silurian chitinozoas, scolecodonts and spores, and Ordovician graptolites, and middle Devonian Coral and conodonts in limestone and chert blocks(Wang et al., 2011a), and Permian radiolarians in the matrix(Wang et al., 2007). The volcanic rock blocks have undergone different degree of metamorphism. Their geochemical characteristics indicate that the rocks are similar to oceanic island arc and seamount(Wang et al., 2009), and SHRIMP U-Pb dating yielded ages from Neoproterozoic to early Paleozoic(Yan et al., 2007;Wang et al., 2009, 2011b). Therefore, comprehensive analysis of regional data, the Baishuijiang group is an accretionary complex which was consisted of matrix and blocks, and was finally formed during Permian-Triassic.
基金supported by National Natural Science Foundation of China (Grant Nos. 40602026, 40772137)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of China (Grant No. J0720)+1 种基金Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2006BAB01A11)the Geological Survey Project of China (Grant No. 1212010611807)
文摘The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonian corals,conodonts,and other fossil fragments within the limestone blocks were discovered in recent field investigations,indicating that the Dabao Formation was formed during late Paleozoic.Combined with other regional geological data,the Dabao Formation in the Southern Qinling Orogenic Belt is considered to be a late Paleozoic or early Mesozoic accretionary complex.
基金supported by the National Natural Science Foundation of China(Grant Nos.41731072,41574095)。
文摘The topographic evolution of continental orogens is important for understanding continental orogenic processes,geodynamic mechanisms,and climatic and environmental changes.The Qinling Orogen is a major orogenic belt in China,and its uplift history can provide insights into the tectonic configuration and geodynamics of China and East Asia.Previous studies have shown that the Dabashan and Micangshan-Hannan Dome(MHD)in the South Qinling orogenic belt were uplifted during the Mesozoic.However,the magnitude of the uplift remains unclear.In this study,using sedimentary records in the northern Sichuan Basin and lithospheric flexural modeling,we estimated the magnitude of Mesozoic uplift of the Dabashan and MHD,along with the effective elastic thickness(Te)of the Sichuan Basin.The Dabashan and MHD were uplifted by approximately 1220 and 880 m during the Middle Jurassic and Early Cretaceous,respectively.Therefore,we propose that the present-day elevation of the Dabashan and MHD is primarily the result of Mesozoic uplift.The differences in the duration and amount of uplift between different tectonic units indicate that the uplift processes and driving mechanisms in the South Qinling orogenic belt were different in the Mesozoic and Cenozoic.Mesozoic uplift was the result of convergence of the North China and South China blocks advanced from east to west,whereas Cenozoic uplift was driven by ongoing indentation of the Indian Plate into Eurasia from southwest to northeast.The lithospheric strength of the northern Sichuan Basin was weakened from the Middle Jurassic to Early Cretaceous,and Tedecreased from 73 to 57 km.This may have been caused by the flexure-related bending stresses in the lithosphere that developed due to the large topographic loading.