Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bif...Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.展开更多
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are develo...In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.展开更多
Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and paramet...Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented.展开更多
The shipping noise properties in the deep ocean are studied. Shipping noise exhibits the strong dual-horned directionality features in the flat-seabed ocean, and its directional density can be modeled by a Von Mises d...The shipping noise properties in the deep ocean are studied. Shipping noise exhibits the strong dual-horned directionality features in the flat-seabed ocean, and its directional density can be modeled by a Von Mises distribution. With the explicit expression for the directional density function, the spatial coherence functions of shipping noise are also derived, and the relative features are studied. The research result shows that the properties of shipping noise are different from the ambient noise of other sources, and it can be used for the sonar array design. The model is well matched with the experimental result, and it can be extended to the situations when the ambient noise exhibits the dual-horned structure.展开更多
Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficienc...Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.展开更多
.Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments.The existing deep-learning methods for holographic imaging often depend solely on the specific co....Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments.The existing deep-learning methods for holographic imaging often depend solely on the specific condition based on the given data distributions,thus hindering their generalization across multiple scenes.One critical problem is how to guarantee the alignment between any given downstream tasks and pretrained models.We analyze the physical mechanism of image degradation caused by turbulence and innovatively propose a swin transformer-based method,termed train-with-coherence-swin(TWC-Swin)transformer,which uses spatial coherence(SC)as an adaptable physical prior information to precisely align image restoration tasks in the arbitrary turbulent scene.The light-processing system(LPR)we designed enables manipulation of SC and simulation of any turbulence.Qualitative and quantitative evaluations demonstrate that the TWC-Swin method presents superiority over traditional convolution frameworks and realizes image restoration under various turbulences,which suggests its robustness,powerful generalization capabilities,and adaptability to unknown environments.Our research reveals the significance of physical prior information in the optical intersection and provides an effective solution for model-to-tasks alignment schemes,which will help to unlock the full potential of deep learning for all-weather optical imaging across terrestrial,marine,and aerial domains.展开更多
Diversity in the neurons and noise are inevitable in the real neuronal network.In this paper,parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network wit...Diversity in the neurons and noise are inevitable in the real neuronal network.In this paper,parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated.The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified.The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased.The results suggest that natural nervous system might profit from both parameter diversity and noise,provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise.展开更多
Rb atom motion in a magneto–optical trap(MOT) consisting of a partially spatially coherent laser(PSCL) is investigated theoretically. The spatial coherence of the laser is controlled by the electro–optic crystal. Th...Rb atom motion in a magneto–optical trap(MOT) consisting of a partially spatially coherent laser(PSCL) is investigated theoretically. The spatial coherence of the laser is controlled by the electro–optic crystal. The instantaneous spatial distribution of the dissipative force induced by the PSCL on an Rb atom is varying with time stochastically. The simulated results indicate that compared with a fully coherent laser, the spatial coherent laser has effects on the atomic trajectories;however, the capture velocity and the escape velocity are kept the same. The main reason is that the spatial coherence of the laser fluctuates temporally and spatially, but the average photon scattering rate varies little, which makes the total number of atoms and the atomic density distribution unchanged.展开更多
In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula...In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.展开更多
Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveal...Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveals the underlying physics of the reduction in the B-integral of spatially PCBs.From the analysis of the simulations,the formula for the modulational instability(MI)gain coefficient of the SSSF of spatially PCBs is obtained by introducing a decrease factor into the formula of the MI gain coefficient of the SSSF of coherent beams.This decrease can be equated to a drop in the injected light intensity or an increase in the critical power.According to this formula,the reference value of the spatial coherence of spatially PCBs is given,offering guidance to overcome the output power limitation of the high-power laser driver due to SSSF.展开更多
Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is prop...Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.展开更多
Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach t...Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.展开更多
Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism o...Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism of drag-reducing solution from the view of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in the solution were compared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. The result relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherent structures during bursts has been extracted by the new mu-level criterion based on locally averaged velocity structure function. The effect of polymers on turbulent coherent structures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing the coherent structures that the wall friction is reduced.展开更多
Based on the moiré effect and the Fresnel diffraction theory, a novel technique for diagnosing the beam properties is presented and analyzed, which is especially suitable for X-ray lasers. The method makes it pos...Based on the moiré effect and the Fresnel diffraction theory, a novel technique for diagnosing the beam properties is presented and analyzed, which is especially suitable for X-ray lasers. The method makes it possible, in a one-shot experimental measurement, to determine the beam quality factor M2, the effective radius of curvature, the beam width, the far-field divergence, and the waist location and radius as well as the spatial coherence and its evolution. Numerical simulation proves the validity of the method. Note that the novel moiré technique opens an efficient road, for the first time, to fully diagnose the spatial properties of X-ray lasers.展开更多
Stimulated emission depletion(STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the ...Stimulated emission depletion(STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of a specimen's optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the severe distortion of the depletion beam profile may cause complete loss of the superresolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is difficult to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique. The full correction can effectively maintain and improve spatial resolution in imaging thick samples.展开更多
Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LE...Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LEDs.Besides,LED arrays are qualified due to their high optical output power.However,LED arrays have not been widely used for investigating optical effects,e.g.,the Lau effect.In this paper,we propose the application of an LED array for realizing the Lau effect by taking into account the influence of the coherence properties of illumination on the Lau effect.Using spatially incoherent illumination with the LED array or a single LED,triangular distributed Lau fringes can be obtained.We apply the obtained Lau fringes in the optical lithography to produce analog structures.Compared to a single LED,the Lau fringes using the LED array have significantly higher intensities.Hence,the exposure time in the lithography process is largely reduced.展开更多
The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=...The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=0° is extracted for analysis. By performing nonlinear regression fitting on the experimental signal to the Henyey-Greenstein phase function, the anisotropy factor is determined. The experiments with tissue phantom consisting of the aqueous suspension of polystyrene microspheres are carried out. The results show that the measured anisotropy factor is well described by Mie theory.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos. 11072135 and 10772101the Fundamental Research Funds for the Central Universities under Grant No. GK200902025
文摘Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.
基金National Natural Science Foundation of China Under Grant No. 50478112
文摘In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872014)
文摘Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented.
文摘The shipping noise properties in the deep ocean are studied. Shipping noise exhibits the strong dual-horned directionality features in the flat-seabed ocean, and its directional density can be modeled by a Von Mises distribution. With the explicit expression for the directional density function, the spatial coherence functions of shipping noise are also derived, and the relative features are studied. The research result shows that the properties of shipping noise are different from the ambient noise of other sources, and it can be used for the sonar array design. The model is well matched with the experimental result, and it can be extended to the situations when the ambient noise exhibits the dual-horned structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375040 and 11974071)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.
基金supported by the National Natural Science Foundation of China(Grants Nos.12174338 and 11874321)
文摘.Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments.The existing deep-learning methods for holographic imaging often depend solely on the specific condition based on the given data distributions,thus hindering their generalization across multiple scenes.One critical problem is how to guarantee the alignment between any given downstream tasks and pretrained models.We analyze the physical mechanism of image degradation caused by turbulence and innovatively propose a swin transformer-based method,termed train-with-coherence-swin(TWC-Swin)transformer,which uses spatial coherence(SC)as an adaptable physical prior information to precisely align image restoration tasks in the arbitrary turbulent scene.The light-processing system(LPR)we designed enables manipulation of SC and simulation of any turbulence.Qualitative and quantitative evaluations demonstrate that the TWC-Swin method presents superiority over traditional convolution frameworks and realizes image restoration under various turbulences,which suggests its robustness,powerful generalization capabilities,and adaptability to unknown environments.Our research reveals the significance of physical prior information in the optical intersection and provides an effective solution for model-to-tasks alignment schemes,which will help to unlock the full potential of deep learning for all-weather optical imaging across terrestrial,marine,and aerial domains.
基金Supported by National Natural Science Foundation of China under Grant Nos.11072135 and 10772101the Fundamental Research Funds for the Central Universities under Grant No.GK200902025
文摘Diversity in the neurons and noise are inevitable in the real neuronal network.In this paper,parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated.The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified.The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased.The results suggest that natural nervous system might profit from both parameter diversity and noise,provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174249 and 61475139)the National High-Technology Research and Development Program of China(Grant No.2011AA060504)the National Key Basic Research Program of China(Grant No.2013CB329501)
文摘Rb atom motion in a magneto–optical trap(MOT) consisting of a partially spatially coherent laser(PSCL) is investigated theoretically. The spatial coherence of the laser is controlled by the electro–optic crystal. The instantaneous spatial distribution of the dissipative force induced by the PSCL on an Rb atom is varying with time stochastically. The simulated results indicate that compared with a fully coherent laser, the spatial coherent laser has effects on the atomic trajectories;however, the capture velocity and the escape velocity are kept the same. The main reason is that the spatial coherence of the laser fluctuates temporally and spatially, but the average photon scattering rate varies little, which makes the total number of atoms and the atomic density distribution unchanged.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11504286)the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JM-470)+1 种基金the Fund from the International Technology Collaborative Center for Advanced Optical Manufacturing and Optoelectronic Measurementthe Science Fund from the Shaanxi Provincial Key Laboratory of Photoelectric Measurement and Instrument Technology.
文摘In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.
文摘Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveals the underlying physics of the reduction in the B-integral of spatially PCBs.From the analysis of the simulations,the formula for the modulational instability(MI)gain coefficient of the SSSF of spatially PCBs is obtained by introducing a decrease factor into the formula of the MI gain coefficient of the SSSF of coherent beams.This decrease can be equated to a drop in the injected light intensity or an increase in the critical power.According to this formula,the reference value of the spatial coherence of spatially PCBs is given,offering guidance to overcome the output power limitation of the high-power laser driver due to SSSF.
基金supported by NSFC Joint Fund with Guangdong under Key Project(U1201258)National Natural Science foundation of China(61402261+3 种基金6130308861572286)the scientific research foundation of Shandong Province of Outstanding Young Scientist Award(BS2013DX048)Shandong Ji’nan Science and Technology Development Project(201202015)
文摘Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.
基金supported by Fund of National Science & Technology monumental projects under Grants No.61105015,NO.61401239,NO.2012-364-641-209
文摘Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.
基金supported by the National Natural Science Foundation of China (11272233)National Basic Research Program (973 Program) (2012CB720101)2012 opening subjects of The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences
文摘Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism of drag-reducing solution from the view of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in the solution were compared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. The result relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherent structures during bursts has been extracted by the new mu-level criterion based on locally averaged velocity structure function. The effect of polymers on turbulent coherent structures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing the coherent structures that the wall friction is reduced.
基金supported by the National High Technology Research and Development Program of China.
文摘Based on the moiré effect and the Fresnel diffraction theory, a novel technique for diagnosing the beam properties is presented and analyzed, which is especially suitable for X-ray lasers. The method makes it possible, in a one-shot experimental measurement, to determine the beam quality factor M2, the effective radius of curvature, the beam width, the far-field divergence, and the waist location and radius as well as the spatial coherence and its evolution. Numerical simulation proves the validity of the method. Note that the novel moiré technique opens an efficient road, for the first time, to fully diagnose the spatial properties of X-ray lasers.
基金National Basic Research Program of China(2015CB352005)National Natural Science Foundation of China(NSFC)(61378091,61404123,61505118,61505121,61525503)+5 种基金China Postdoctoral Science Foundation(2014M55226)Natural Science Foundation of Guangdong Province(2014A030312008)Hong Kong,Macao and Taiwan cooperation innovation platform&major projects of international cooperation in Colleges and Universities in Guangdong Province(2015KGJHZ002)National Institute of General Medical Sciences(NIGMS)(P20GM103499,R21GM104683)National Science Foundation(NSF)(1539034)Shenzhen Basic Research Project(JCYJ20150930104948169,GJHZ20160226202139185,JCYJ20160328144746940)
文摘Stimulated emission depletion(STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of a specimen's optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the severe distortion of the depletion beam profile may cause complete loss of the superresolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is difficult to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique. The full correction can effectively maintain and improve spatial resolution in imaging thick samples.
基金the support by the Deutsche Forschungsgemeinschaft(DFG)in the framework of Research Training Group“Tip and laser-based 3D-nanofabrication in extended macroscopic working areas”(GRK 2182/1)at the Technische Universitat Ilmenau,Germany.
文摘Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LEDs.Besides,LED arrays are qualified due to their high optical output power.However,LED arrays have not been widely used for investigating optical effects,e.g.,the Lau effect.In this paper,we propose the application of an LED array for realizing the Lau effect by taking into account the influence of the coherence properties of illumination on the Lau effect.Using spatially incoherent illumination with the LED array or a single LED,triangular distributed Lau fringes can be obtained.We apply the obtained Lau fringes in the optical lithography to produce analog structures.Compared to a single LED,the Lau fringes using the LED array have significantly higher intensities.Hence,the exposure time in the lithography process is largely reduced.
基金supported by the National Natural Science Foundation of China(No.61108086)the Natural Science Foundation of Chongqing(Nos.2011BB5066 and 2012jj A0612)+3 种基金the Chongqing City Science and Technology Plan(No.cstc2012gg-yyjs0572)the Fundamental Research Funds for the Central Universities(Nos.CDJZR10160003 and CDJZR13160008)the China Postdoctoral Science Foundationthe Chongqing Postdoctoral Science Special Foundation of China
文摘The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=0° is extracted for analysis. By performing nonlinear regression fitting on the experimental signal to the Henyey-Greenstein phase function, the anisotropy factor is determined. The experiments with tissue phantom consisting of the aqueous suspension of polystyrene microspheres are carried out. The results show that the measured anisotropy factor is well described by Mie theory.