Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,ne...Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,neuropsychiatric sequelae,and changes in brain function remain unknown.This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19(8 males and 11 females,aged 54.2±8.7 years).Fatigue and myalgia were persistent symptoms at the 1-year follow-up.The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls(7 males and 18 females,aged 50.5±11.6 years),COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation(ALFF)values in the left precentral gyrus,middle frontal gyrus,inferior frontal gyrus of operculum,inferior frontal gyrus of triangle,insula,hippocampus,parahippocampal gyrus,fusiform gyrus,postcentral gyrus,inferior parietal angular gyrus,supramarginal gyrus,angular gyrus,thalamus,middle temporal gyrus,inferior temporal gyrus,caudate,and putamen.ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores,and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization.The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors.This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae.This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University(approval No.2020 S004)on March 19,2020.展开更多
We studied the influence of doctor-patient communication skills training on brain functional architecture using resting-state functional MRI(rs-fMRI) with a regional homogeneity(ReHo) method. Ten medical students ...We studied the influence of doctor-patient communication skills training on brain functional architecture using resting-state functional MRI(rs-fMRI) with a regional homogeneity(ReHo) method. Ten medical students participated in the study. A 1-year long doctor-patient communication skills training program was conducted. RsfMRI data were collected at baseline, one month and one year after training. There was a significant increase in the communication skills test average scores between baseline and 1-month duration of training(P〈0.001). After one month of communication skills training, medical students had decreased ReHo in the right superior temporal gyrus compared with the baseline. After one year of communication skills training, students had increased ReHo in multiple regions and decreased ReHo in several regions(P 〈0.05, Alphasim corrected). The change of ReHo values in the superior temporal gyrus negatively correlated with the change of communication skills scale score between one month after communication skills training and baseline(r=-0.734, P= 0.036). The training program we used can be an effective approach of improving doctor-patient communication skills, and the training resulted in functional plasticity of the brain’s architecture toward optimizing locally functional organization.展开更多
Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers...Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture atTaichong (LR3) andTaixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture atTaichong andTaixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic res-onance imaging, which revealed that the amplitude of low-frequency lfuctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferi-or frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present ifndings indicate that acupuncture atTaichong andTaixi speciifcally promote blood lfow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.展开更多
In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated ...In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated assembly of global stiffness matrix and repeated inverse operations of the matrix caused by constant changes of structure topology. A new criterion of degenerate of the structure into mechanism is introduced. The calculation examples are satisfactory.展开更多
AIM: To investigate the functional networks underlying the brain-activity changes of patients with high myopia using the voxel-wise degree centrality(DC) method.METHODS: In total, 38 patients with high myopia(HM...AIM: To investigate the functional networks underlying the brain-activity changes of patients with high myopia using the voxel-wise degree centrality(DC) method.METHODS: In total, 38 patients with high myopia(HM)(17 males and 21 females), whose binocular refractive diopter were-6.00 to-7.00 D, and 38 healthy controls(17 males and 21 females), closely matched in age, sex, and education levels, participated in the study. Spontaneous brain activities were evaluated using the voxel-wise DC method. The receiver operating characteristic curve was measured to distinguish patients with HM from healthy controls. Correlation analysis was used to explore the relationship between the observed mean DC values of the different brain areas and the behavioral performance.RESULTS: Compared with healthy controls, HM patients had significantly decreased DC values in the right inferior frontal gyrus/insula, right middle frontal gyrus, and right supramarginal/inferior parietal lobule(P〈0.05). In contrast, HM patients had significantly increased DC values in the right cerebellum posterior lobe, left precentral gyrus/postcentral gyrus, and right middle cingulate gyrus(P〈0.05). However, no relationship was found between the observed mean DC values of the different brain areas and the behavioral performance(P〉0.05).CONCLUSION: HM is associated with abnormalities in many brain regions, which may indicate the neural mechanisms of HM. The altered DC values may be used as a useful biomarker for the brain activity changes in HM patients.展开更多
Previous studies examining coherence and connectivity deviations in schizophrenia patients relied on standard coherence measures between recording sites (at the sensor level). A coherence source imaging (CSI) methodol...Previous studies examining coherence and connectivity deviations in schizophrenia patients relied on standard coherence measures between recording sites (at the sensor level). A coherence source imaging (CSI) methodology where coherence is assessed within imaged brain structures (at the source level) was developed recently by our group and applied successfully for detecting coherent areas in the cortical networks of patients with epilepsy. We applied this Magnetoencephalography (MEG)-CSI technique to measure normal and pathological patterns of brain oscillations (biomarkers) in normal subjects and patients diagnosed with schizophrenia. Twelve patients diagnosed with schizophrenia and twelve healthy control subjects were studied. A ten-minute resting state MEG brain scan was performed with eyes open. MEG-CSI analysis was performed to identify the cortical areas that interacted strongly within the 3 - 50 Hz frequency range. Statistically significant increased regions of coherence were detected in schizophrenia patients compared to controls in the right inferior frontal gyrus (BA 47—pars orbitalis), left superior frontal gyrus (BA9— dorsolateral prefrontal cortex), right middle frontal gyrus (BA 10—anterior prefrontal cortex & BA 46—dorsolateral prefrontal cortex), and right cingulate gyrus (BA 24—ventral anterior cingulate cortex). These areas are involved in language, memory, decision making, empathy, executive and, higher cognitive functioning. We conclude that MEG-CSI can detect imaging biomarkers from resting state brain activity in schizophrenia patients that deviates from normal control subjects in several behaviorally salient brain regions. Analysis with MEG-CSI can provide biomarkers of abnormalities in the resting-state. The findings and procedures described can be used to probe the pathophysiology of schizophrenia and possibly detect subtypes.展开更多
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the...Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.展开更多
Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influen...Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.展开更多
The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of function...The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients. However, alterations in intrinsic brain activity patterns in mild cogniti...Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients. However, alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood. This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls. Methods In the present study, resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients, 18 mild AD patients and 20 healthy elderly subjects. And amplitude of low-frequency fluctuation (ALFF) method was used. Results Compared with healthy elderly subjects, aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex, left lateral temporal cortex, and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL). Mild AD patients showed decreased ALFF in the left TPJ, posterior IPL (plPL), and dorsolateral prefrontal cortex compared with aMCI patients. Mild AD patients also had decreased ALFF in the right posterior cingulate cortex, right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects. Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients. Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients. These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.展开更多
Objective: To investigate the modulatory effect of acupuncture treatment on the resting-state functional connectivity of brain regions in migraine without aura (MWoA) patients. Methods: Twelve MWoA patients were t...Objective: To investigate the modulatory effect of acupuncture treatment on the resting-state functional connectivity of brain regions in migraine without aura (MWoA) patients. Methods: Twelve MWoA patients were treated with standard acupuncture treatment for 4 weeks. All MWoA patients received resting-state functional magnetic resonance imaging (fMRI) scanning before and after acupuncture treatment. Another 12 normal subjects matched in age and gender were recruited to serve as healthy controls. The changes of resting- state functional connectivity in MWoA patients before and after the acupuncture treatment and those with the healthy controls were compared. Results: Before acupuncture treatment, the MWoA patients had significantly decreased functional connectivity in certain brain regions within the frontal and temporal lobe when compared with the healthy controls. After acupuncture treatment, brain regions showing decreased functional connectivity revealed significant reduction in MWoA patients compared with before acupuncture treatment. Conclusions: Acupuncture treatment could increase the functional connectivity of brain regions in the intrinsic decreased brain networks in MWoA patients. The results provided further insights into the interpretation of neural mechanisms of acupuncture treatment for migraine.展开更多
This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relation...This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relationships with clinical features. Totally, 16 male and 2 female acute OGI patients and 18 sex, age, and education-matched healthy volunteers were enrolled in the study. All subjects were scanned through functional magnetic resonance imaging (fMRI). Receiver operating characteristic (ROC) curves analyses had been used to identify the VMHC in these brain areas could be used as biomarkers to distinguish OGI and from healthy control (HC). The mean VMHC values in multiple brain areas and clinical OGI manifestations were evaluated with a Pearson correlation analysis. OGI patients had significantly decreased VMHC in the bilateral calcarine/lingual/cuneus (BA18, 19, 30) and middle occipital gyrus (BA18, 19). The OGI patients had abnormal interhemispheric FC in the dorsal visual pathway, which may represent the pathophysiological mechanism that underlies acute vision loss after OGI.展开更多
Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)rema...Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)remain unclear.The aim of this study was to investigate the possible mechanisms of PBD through brain imaging and explore the influence of psychotic symptoms on functional alterations in PBD patients.Twenty-nine psychotic and 26 non-psychotic PBD patients,as well as 19 age-and sex-matched healthy controls underwent a restingstate functional MRI scan and the data were analyzed by independent component analysis.The DMN component from the fMRI data was extracted for each participant.Spearman's rank correlation analysis was performed between aberrant connectivity and clinical measurements.The results demonstrated that psychotic PBD was characterized by aberrant DMN connectivity in the anterior cingulate cortex/medial prefrontal cortex,bilateral caudate nucleus,bilateral angular gyri,and left middle temporal gyrus,while non-psychotic PBD was not,suggesting further impairment with the development of psychosis.In summary,we demonstrated unique impairment in DMN functional connectivity in the psychotic PBD group.These specific neuroanatomical abnormalities may shed light on the underlying pathophysiology and presentation of PBD.展开更多
Background Internet addition disorder (lAD) is currently becoming a serious mental health problem among Chinese adolescents. The pathogenesis of lAD, however, remains unclear. The purpose of this study applied regio...Background Internet addition disorder (lAD) is currently becoming a serious mental health problem among Chinese adolescents. The pathogenesis of lAD, however, remains unclear. The purpose of this study applied regional homogeneity (ReHo) method to analyze encephalic functional characteristic of lAD college students under resting state. Methods Functional magnetic resonanc image (fMRI) was performed in 19 lAD college students and 19 controls under resting state. ReHo method was used to analyze the differences between the average ReHo in two groups. Results The following increased ReHo brain regions were found in lAD group compared with control group: cerebellum, brainstem, right cingulate gyrus, bilateral parahippocampus, right frontal lobe (rectal gyrus, inferior frontal gyrus and middle frontal gyrus), left superior frontal gyrus, left precuneus, right postcentral gyrus, right middle occipital gyrus, right inferior temporal gyrus, left superior temporal gyrus and middle temporal gyrus. The decreased ReHo brain regions were not found in the lAD group compared with the control group. Conclusions There are abnormalities in regional homogeneity in lAD college students compared with the controls and enhancement of synchronization in most encephalic regions can be found. The results reflect the functional change of brain in lAD college students. The connections between the enhancement of synchronization among cerebellum, brainstem, limbic lobe, frontal lobe and apical lobe may be relative to reward pathways.展开更多
In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the...In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.展开更多
In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, har...In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeχe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.展开更多
We employ the coherent thermal states(a kind of entangled states)in thermal field dynamics to establisha complete entangled state formalism expressing pseudo-classical representations of density operator for light fie...We employ the coherent thermal states(a kind of entangled states)in thermal field dynamics to establisha complete entangled state formalism expressing pseudo-classical representations of density operator for light field.Especially,the relationship between the coherent thermal state and the characteristic function and the positive Prepresentation in quantum optics theory are obtained.展开更多
Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd...Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter a the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state |β, m〉o (or |β,m〉e) is more pronounced when m is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.展开更多
This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distr...This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distribution and phase variance are calculated. Special cases of the constructed superposition states are presented. The results show that depending on the vacuum state coefficient γ and the coherent state coefficient a, it can generate a variety of nonclassical states.展开更多
基金supported by Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of China,No.2020SK3006(to JL)Clinical Research Center for Medical Imaging in Hunan Province of China,No.2020SK4001(to JL)the Innovative Major Emergency Project Funding against the New Coronavirus Pneumonia in Hunan Province of China,No.2020SK3014(to JYL)。
文摘Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,neuropsychiatric sequelae,and changes in brain function remain unknown.This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19(8 males and 11 females,aged 54.2±8.7 years).Fatigue and myalgia were persistent symptoms at the 1-year follow-up.The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls(7 males and 18 females,aged 50.5±11.6 years),COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation(ALFF)values in the left precentral gyrus,middle frontal gyrus,inferior frontal gyrus of operculum,inferior frontal gyrus of triangle,insula,hippocampus,parahippocampal gyrus,fusiform gyrus,postcentral gyrus,inferior parietal angular gyrus,supramarginal gyrus,angular gyrus,thalamus,middle temporal gyrus,inferior temporal gyrus,caudate,and putamen.ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores,and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization.The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors.This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae.This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University(approval No.2020 S004)on March 19,2020.
文摘We studied the influence of doctor-patient communication skills training on brain functional architecture using resting-state functional MRI(rs-fMRI) with a regional homogeneity(ReHo) method. Ten medical students participated in the study. A 1-year long doctor-patient communication skills training program was conducted. RsfMRI data were collected at baseline, one month and one year after training. There was a significant increase in the communication skills test average scores between baseline and 1-month duration of training(P〈0.001). After one month of communication skills training, medical students had decreased ReHo in the right superior temporal gyrus compared with the baseline. After one year of communication skills training, students had increased ReHo in multiple regions and decreased ReHo in several regions(P 〈0.05, Alphasim corrected). The change of ReHo values in the superior temporal gyrus negatively correlated with the change of communication skills scale score between one month after communication skills training and baseline(r=-0.734, P= 0.036). The training program we used can be an effective approach of improving doctor-patient communication skills, and the training resulted in functional plasticity of the brain’s architecture toward optimizing locally functional organization.
基金supported by a grant from the National Key Basic Research and Development Project(973 Program),No.2012CB518504a grant from the National Level Undergraduate Student Innovation Venture Training Project of Local Colleges,No.201212121048a grant from the ThreeStage Key Subject Construction Project of Guangdong Province of China(211 Project),No.(2009)431
文摘Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture atTaichong (LR3) andTaixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture atTaichong andTaixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic res-onance imaging, which revealed that the amplitude of low-frequency lfuctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferi-or frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present ifndings indicate that acupuncture atTaichong andTaixi speciifcally promote blood lfow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.
文摘In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated assembly of global stiffness matrix and repeated inverse operations of the matrix caused by constant changes of structure topology. A new criterion of degenerate of the structure into mechanism is introduced. The calculation examples are satisfactory.
基金Supported by National Natural Science Foundation of China (No.81760179 No.81360151)+2 种基金Natural Science Foundation of Jiangxi Province (No.20171BAB205046)Jiangxi Province Education Department Key Foundation (No. GJJ160033)Health Development Planning Commission Science Foundation of Jiangxi Province (No.20185118)
文摘AIM: To investigate the functional networks underlying the brain-activity changes of patients with high myopia using the voxel-wise degree centrality(DC) method.METHODS: In total, 38 patients with high myopia(HM)(17 males and 21 females), whose binocular refractive diopter were-6.00 to-7.00 D, and 38 healthy controls(17 males and 21 females), closely matched in age, sex, and education levels, participated in the study. Spontaneous brain activities were evaluated using the voxel-wise DC method. The receiver operating characteristic curve was measured to distinguish patients with HM from healthy controls. Correlation analysis was used to explore the relationship between the observed mean DC values of the different brain areas and the behavioral performance.RESULTS: Compared with healthy controls, HM patients had significantly decreased DC values in the right inferior frontal gyrus/insula, right middle frontal gyrus, and right supramarginal/inferior parietal lobule(P〈0.05). In contrast, HM patients had significantly increased DC values in the right cerebellum posterior lobe, left precentral gyrus/postcentral gyrus, and right middle cingulate gyrus(P〈0.05). However, no relationship was found between the observed mean DC values of the different brain areas and the behavioral performance(P〉0.05).CONCLUSION: HM is associated with abnormalities in many brain regions, which may indicate the neural mechanisms of HM. The altered DC values may be used as a useful biomarker for the brain activity changes in HM patients.
文摘Previous studies examining coherence and connectivity deviations in schizophrenia patients relied on standard coherence measures between recording sites (at the sensor level). A coherence source imaging (CSI) methodology where coherence is assessed within imaged brain structures (at the source level) was developed recently by our group and applied successfully for detecting coherent areas in the cortical networks of patients with epilepsy. We applied this Magnetoencephalography (MEG)-CSI technique to measure normal and pathological patterns of brain oscillations (biomarkers) in normal subjects and patients diagnosed with schizophrenia. Twelve patients diagnosed with schizophrenia and twelve healthy control subjects were studied. A ten-minute resting state MEG brain scan was performed with eyes open. MEG-CSI analysis was performed to identify the cortical areas that interacted strongly within the 3 - 50 Hz frequency range. Statistically significant increased regions of coherence were detected in schizophrenia patients compared to controls in the right inferior frontal gyrus (BA 47—pars orbitalis), left superior frontal gyrus (BA9— dorsolateral prefrontal cortex), right middle frontal gyrus (BA 10—anterior prefrontal cortex & BA 46—dorsolateral prefrontal cortex), and right cingulate gyrus (BA 24—ventral anterior cingulate cortex). These areas are involved in language, memory, decision making, empathy, executive and, higher cognitive functioning. We conclude that MEG-CSI can detect imaging biomarkers from resting state brain activity in schizophrenia patients that deviates from normal control subjects in several behaviorally salient brain regions. Analysis with MEG-CSI can provide biomarkers of abnormalities in the resting-state. The findings and procedures described can be used to probe the pathophysiology of schizophrenia and possibly detect subtypes.
基金supported by the Natural Science Foundation of Guangdong Province,No.2016A030313180(to FCJ)
文摘Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.
基金supported by the Institute for Basic Science[grant No.IBS-R015-D1]the National Research Foundation of Korea(grant No.NRF-2016R1A2B4008545)
文摘Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.
基金supported by the National Natural Science Foundation of China,No.61401308,61572063(both to XHW)the Natural Science Foundation of Beijing of China,No.L172055(to XHW)+3 种基金the Beijing Municipal Science&Technology Commission Research Fund of China,No.Z171100000417004(to XHW)the China Postdoctoral Fund,No.2018M631755(to XHW)the Special Fund for Improving Comprehensive Strength of Hebei University in the Midwest of China,No.801260201011(to XHW)the High-Level Talent Funding Project—Selective Post-doctoral Research Project Fund of Hebei Province of China,No.B2018003002(to XHW)
文摘The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金grants from the Natural Science Foundation of China,the Shanghai High Technology Research Program
文摘Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients. However, alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood. This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls. Methods In the present study, resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients, 18 mild AD patients and 20 healthy elderly subjects. And amplitude of low-frequency fluctuation (ALFF) method was used. Results Compared with healthy elderly subjects, aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex, left lateral temporal cortex, and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL). Mild AD patients showed decreased ALFF in the left TPJ, posterior IPL (plPL), and dorsolateral prefrontal cortex compared with aMCI patients. Mild AD patients also had decreased ALFF in the right posterior cingulate cortex, right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects. Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients. Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients. These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.
基金Supported by the National Natural Science Foundation of China(No.81473667)Beijing Young Talent Program of Beijing Education Committee(No.YETP0823)the Research Funds of Beijing University of Chinese Medicine(No.2013-JYBZZJS-148,2014-JYBZZ-XS-142)
文摘Objective: To investigate the modulatory effect of acupuncture treatment on the resting-state functional connectivity of brain regions in migraine without aura (MWoA) patients. Methods: Twelve MWoA patients were treated with standard acupuncture treatment for 4 weeks. All MWoA patients received resting-state functional magnetic resonance imaging (fMRI) scanning before and after acupuncture treatment. Another 12 normal subjects matched in age and gender were recruited to serve as healthy controls. The changes of resting- state functional connectivity in MWoA patients before and after the acupuncture treatment and those with the healthy controls were compared. Results: Before acupuncture treatment, the MWoA patients had significantly decreased functional connectivity in certain brain regions within the frontal and temporal lobe when compared with the healthy controls. After acupuncture treatment, brain regions showing decreased functional connectivity revealed significant reduction in MWoA patients compared with before acupuncture treatment. Conclusions: Acupuncture treatment could increase the functional connectivity of brain regions in the intrinsic decreased brain networks in MWoA patients. The results provided further insights into the interpretation of neural mechanisms of acupuncture treatment for migraine.
基金Supported by the National Natural Science Foundation of China(No.81660158No.81400372)+1 种基金Natural Science Key Project of Jiangxi Province(No.20161ACB21017)Health Development Planning Commission Science Foundation of Jiangxi Province(No.20175116)
文摘This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relationships with clinical features. Totally, 16 male and 2 female acute OGI patients and 18 sex, age, and education-matched healthy volunteers were enrolled in the study. All subjects were scanned through functional magnetic resonance imaging (fMRI). Receiver operating characteristic (ROC) curves analyses had been used to identify the VMHC in these brain areas could be used as biomarkers to distinguish OGI and from healthy control (HC). The mean VMHC values in multiple brain areas and clinical OGI manifestations were evaluated with a Pearson correlation analysis. OGI patients had significantly decreased VMHC in the bilateral calcarine/lingual/cuneus (BA18, 19, 30) and middle occipital gyrus (BA18, 19). The OGI patients had abnormal interhemispheric FC in the dorsal visual pathway, which may represent the pathophysiological mechanism that underlies acute vision loss after OGI.
基金supported by National Natural Science Foundation of China (81171291, 81371531, 81571344, 81871344)the Natural Science Foundation of Jiangsu Province, China (BK20161109)+2 种基金the Key Program for Guangming Lu (BWS11J063, and 10z026)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (18KJB190003)the Postdoctoral Science Foundation of China (2014M552700)
文摘Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)remain unclear.The aim of this study was to investigate the possible mechanisms of PBD through brain imaging and explore the influence of psychotic symptoms on functional alterations in PBD patients.Twenty-nine psychotic and 26 non-psychotic PBD patients,as well as 19 age-and sex-matched healthy controls underwent a restingstate functional MRI scan and the data were analyzed by independent component analysis.The DMN component from the fMRI data was extracted for each participant.Spearman's rank correlation analysis was performed between aberrant connectivity and clinical measurements.The results demonstrated that psychotic PBD was characterized by aberrant DMN connectivity in the anterior cingulate cortex/medial prefrontal cortex,bilateral caudate nucleus,bilateral angular gyri,and left middle temporal gyrus,while non-psychotic PBD was not,suggesting further impairment with the development of psychosis.In summary,we demonstrated unique impairment in DMN functional connectivity in the psychotic PBD group.These specific neuroanatomical abnormalities may shed light on the underlying pathophysiology and presentation of PBD.
基金This project was supported by grants of the National Natural Science Foundation of China (No. 30830046, No. 30670751 and No. 30570695), the National Science and Technology Program of China (No. 2007BAI17B02), the National 973 Program of China (No. 2009CB918303), Natural Science Foundation of Hunan Province (No. 07JJ3042) and Department of Public Health of Hunan Province (No. B2005048).
文摘Background Internet addition disorder (lAD) is currently becoming a serious mental health problem among Chinese adolescents. The pathogenesis of lAD, however, remains unclear. The purpose of this study applied regional homogeneity (ReHo) method to analyze encephalic functional characteristic of lAD college students under resting state. Methods Functional magnetic resonanc image (fMRI) was performed in 19 lAD college students and 19 controls under resting state. ReHo method was used to analyze the differences between the average ReHo in two groups. Results The following increased ReHo brain regions were found in lAD group compared with control group: cerebellum, brainstem, right cingulate gyrus, bilateral parahippocampus, right frontal lobe (rectal gyrus, inferior frontal gyrus and middle frontal gyrus), left superior frontal gyrus, left precuneus, right postcentral gyrus, right middle occipital gyrus, right inferior temporal gyrus, left superior temporal gyrus and middle temporal gyrus. The decreased ReHo brain regions were not found in the lAD group compared with the control group. Conclusions There are abnormalities in regional homogeneity in lAD college students compared with the controls and enhancement of synchronization in most encephalic regions can be found. The results reflect the functional change of brain in lAD college students. The connections between the enhancement of synchronization among cerebellum, brainstem, limbic lobe, frontal lobe and apical lobe may be relative to reward pathways.
文摘In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.
文摘In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeχe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.
基金the President Foundation of the Chinese Academy of Sciences
文摘We employ the coherent thermal states(a kind of entangled states)in thermal field dynamics to establisha complete entangled state formalism expressing pseudo-classical representations of density operator for light field.Especially,the relationship between the coherent thermal state and the characteristic function and the positive Prepresentation in quantum optics theory are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574060)the Natural Science Foundation of Shandong Province of China (Grant No Y2004A09)
文摘Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter a the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state |β, m〉o (or |β,m〉e) is more pronounced when m is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10974039)the National Basic Research Program of China (Grant No. 2006CB302901)
文摘This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distribution and phase variance are calculated. Special cases of the constructed superposition states are presented. The results show that depending on the vacuum state coefficient γ and the coherent state coefficient a, it can generate a variety of nonclassical states.