期刊文献+
共找到223,626篇文章
< 1 2 250 >
每页显示 20 50 100
Global static stability and its relation to gravity waves in the middle atmosphere 被引量:2
1
作者 Xiao Liu JiYao Xu Jia Yue 《Earth and Planetary Physics》 CSCD 2020年第5期504-512,共9页
The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband ... The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument from 2002 to 2018.At low latitudes,a layer with enhanced N2 occurs at an altitude of^20 km and exhibits annual oscillations caused by tropopause inversion layers.Above an altitude of^70 km,enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause.The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of^40°N/S.This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere.This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes. 展开更多
关键词 atmospheric static stability gravity waves annual oscillation semiannual oscillation MESOPAUSE
下载PDF
NOVEL FORMULATION OF STATIC STABILITY FOR A WALKING QUADRUPED ROBOT 被引量:4
2
作者 Chen XuedongSchool of Mechanical Scienceand Engineering,Huazhong University of Scienceand Technology,Wuhan 430074, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期120-122,共3页
By defining the static stable area for foot placement, a new approach to analysis of quadruped robot stability is presented.Unlike conventionally, the method avoids solving complicated direct kinematics of quadruped r... By defining the static stable area for foot placement, a new approach to analysis of quadruped robot stability is presented.Unlike conventionally, the method avoids solving complicated direct kinematics of quadruped robot and shows the information on the robot stability and the selection of swing leg.Especially, the proposed algorithm can be used as real-time operation for on-line gait generation and control for quadruped robots.The effectiveness of the proposed approach is shown through a practical crawling experiment of the quadruped robot TITAN-VIII. 展开更多
关键词 步行机器人 四足机器人 静态稳定性 公式化
下载PDF
Static Stability Analysis of a Single Planar Object Grasped by a.Multifingered Hand
3
作者 Takayoshi Yamada Manabu Yamada Hidehiko Yamamoto 《Journal of Mechanics Engineering and Automation》 2012年第10期606-627,共22页
关键词 平面物体 稳定性分析 刚度矩阵 静力 旋转接头 弹簧模型 位移方向 关节模型
下载PDF
Improved Prediction of Slope Stability under Static and Dynamic Conditions Using Tree-BasedModels 被引量:1
4
作者 Feezan Ahmad Xiaowei Tang +2 位作者 Jilei Hu Mahmood Ahmad Behrouz Gordan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期455-487,共33页
Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation a... Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research. 展开更多
关键词 Slope stability seismic excitation static condition random tree reduced error pruning tree
下载PDF
Numerical Stability and Accuracy of Contact Angle Schemes in Pseudopotential Lattice Boltzmann Model for Simulating Static Wetting and Dynamic Wetting
5
作者 Dongmin Wang Gaoshuai Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期299-318,共20页
There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity sch... There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting. 展开更多
关键词 Pseudopotential lattice Boltzmann model contact angle scheme static wetting dynamic wetting capillary imbibition
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
6
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road static and dynamic conditions
下载PDF
Effects of connected automated vehicle on stability and energy consumption of heterogeneous traffic flow system
7
作者 申瑾 赵建东 +2 位作者 刘华清 姜锐 余智鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期291-301,共11页
With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)wi... With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion. 展开更多
关键词 heterogeneous traffic flow CAV linear stability nonlinear stability energy consumption
原文传递
Static Stretching Combined with Conscious Slower Breathing May Increase Parasympathetic Activity and Reduce Stress in Adult Women
8
作者 Mami Sakurai Yasushi Ikarashi +3 位作者 Masahiro Tabuchi Ailing Hu Takuji Yamaguchi Hiroyuki Kobayashi 《Health》 2024年第3期242-256,共15页
Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields t... Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields to not only increase muscle flexibility but also reduce stress. Additionally, conscious slower breathing (CSB) predominates parasympathetic activity, causing a relaxing effect. These results indicate that combining SST and CSB may be more useful in reducing stress. However, to the best of our knowledge, the effect of this combination remains unclear. Objective: This study aimed to elucidate the effects of the combination of SST and CSB on autonomic activity and stress in adult women. Methods: Eleven healthy Japanese adult female participants performed SST with nonconscious natural breathing for 20 min. The same participants performed SST in combination with CSB (2 s inspiratory and 4 s expiratory) for 20 min on another day. Salivary cortisol and chromogranin A levels were measured before and after stretching as stress markers of the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. The coefficient of variation of the R-R interval (CVR-R) and high-frequency component (HF), which reflect parasympathetic nerve activity, and heart rate and low-frequency component (LF)/HF ratio, which reflect sympathetic nerve activity, were measured before, during, and after stretching. Results: SST decreased cortisol levels but with no significant changes in chromogranin A, heart rate, CVR-R, HF, or LF/HF ratio. The combination of SST and CSB increased CVR-R and HF levels in addition to decreasing cortisol levels but with no significant changes in chromogranin A, heart rate, or LF/HF levels. Conclusion: These results indicate that the combination of SST and CSB may increase parasympathetic activity and reduce stress. However, future randomized controlled trials with larger sample sizes should support this conclusion. 展开更多
关键词 static Stretching Conscious Slower Breathing Autonomic Activity Heart Rate Variability STRESS
下载PDF
Functional nanolayers favor the stability of solid-electrolyteinterphase in rechargeable batteries
9
作者 Huiqiao Liu Jiakun Zhang +3 位作者 Jinjin Fu Chao Li Yang Fan Kangzhe Cao 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期1-5,共5页
Rechargeable batteries have brought us lots of convenience and changed the way we live.However,the demand for higher energy density,longer cycle life,and more fast charging ability urges researchers to develop advance... Rechargeable batteries have brought us lots of convenience and changed the way we live.However,the demand for higher energy density,longer cycle life,and more fast charging ability urges researchers to develop advanced battery material and chemistry[1,2]. 展开更多
关键词 BATTERY ELECTROLYTE stability
下载PDF
Stability and melting behavior of boron phosphide under high pressure
10
作者 梁文嘉 向晓君 +2 位作者 李倩 梁浩 彭放 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期579-584,共6页
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s... Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices. 展开更多
关键词 boron phosphide stability melting curve high pressure
原文传递
Static and Thermal Analysis of Aluminium (413,390,384 and 332) Piston Using Finite Element Method
11
作者 Offei David Inusah Jacob Kwaku Nkrumah Vincent Akolbire Atindana 《Modeling and Numerical Simulation of Material Science》 2024年第1期1-38,共38页
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut... The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders. 展开更多
关键词 Von Mise stress Total deformation Aluminium alloy Thermal analysis. PISTON static structural Heat fux
下载PDF
Slope stability of reclaimed coal mines through a new water filling index
12
作者 Antonios Mikroutsikos Alexandros I.Theocharis +1 位作者 Nikolaos C.Koukouzas Ioannis E.Zevgolis 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期828-839,共12页
A common reclamation practice for closed coal surface mines is filling them with water to form pit lakes.The creation and sustainability of these lakes are significantly affected by the stability of the corresponding ... A common reclamation practice for closed coal surface mines is filling them with water to form pit lakes.The creation and sustainability of these lakes are significantly affected by the stability of the corresponding slopes.The present study provides a general framework for analyzing the water filling’s effect on slope stability based on a new water filling index,which can indirectly consider the factors affecting the process and efficiently quantify the filling speed’s influence.The assumptions of the proposed approach are thoroughly discussed,and the range of the water filling index is identified.Furthermore,the safety factor is calculated using the finite element method with the shear strength reduction technique during the filling process for various conditions(soil properties,slope geometry,hydraulic conditions,and water filling speed).Results are presented as normalized stability charts for practical use.During the water filling,the stability gradually decreases until the reservoir reaches a critical level of 10%e40%of the total height;it then increases to even more stable conditions than the initial one.Overall,the present analysis allows for the preliminary stability evaluation of a coal mine during the formation of a pit lake and the appropriate quantification of the water filling’s effect. 展开更多
关键词 Post-coal era Open-pit flooding stability charts Critical level
下载PDF
Effects of layer interactions on instantaneous stability of finite Stokes flows
13
作者 Chen ZHAO Zhenli CHEN +1 位作者 C.T.MUTASA Dong LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期69-84,共16页
The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear sta... The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear stability analysis of the frozen phases of the base flow. The oscillations of two plates can have different velocity amplitudes, initial phases, and frequencies. The effects of the Stokes-layer interactions on the stability when two plates oscillate synchronously are analyzed. The growth rates of two most unstable modes when δ < 0.12 are almost equal, and δ = δ*/h*, where δ*and h*are the Stokes-layer thickness and the half height of the channel, respectively. However, their vorticities are different. The vorticity of the most unstable mode is symmetric, while the other is asymmetric. The Stokes-layer interactions have a destabilizing effect on the most unstable mode when δ < 0.68, and have a stabilizing effect when δ > 0.68. However, the interactions always have a stabilizing effect on the other unstable mode. It is explained that one of the two unstable modes has much higher dissipation than the other one when the Stokes-layer interactions are strong. We also find that the stability of the Stokes layer is closely related to the inflectional points of the base-flow velocity profile. The effects of inconsistent velocity-amplitude, initial phase, and frequency of the oscillations on the stability are analyzed. The energy of the most unstable eigenvector is mainly distributed near the plate of higher velocity amplitude or higher oscillation frequency. The effects of the initial phase difference are complicated because the base-flow velocity is extremely sensitive to the initial phase. 展开更多
关键词 finite Stokes layer instantaneous stability Stokes-layer interaction asynchronous oscillation
下载PDF
A positive trend in the stability of global offshore wind energy
14
作者 Chongwei Zheng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期123-134,共12页
The recognition on the trend of wind energy stability is still extremely rare,although it is closely related to acquisition efficiency,grid connection,equipment lifetime,and costs of wind energy utilization.Using the ... The recognition on the trend of wind energy stability is still extremely rare,although it is closely related to acquisition efficiency,grid connection,equipment lifetime,and costs of wind energy utilization.Using the 40-year(1979–2018)ERA-Interim data from the European Center for Medium-Range Weather Forecasts,this study presented the spatial-temporal distribution and climatic trend of the stability of global offshore wind energy as well as the abrupt phenomenon of wind energy stability in key regions over the past 40 years with the climatic analysis method and Mann-Kendall(M-K)test.The results show the following 5 points.(1)According to the coefficient of variation(C_(v))of the wind power density,there are six permanent stable zones of global offshore wind energy:the southeast and northeast trade wind zones in the Indian,Pacific and Atlantic oceans,the Southern Hemisphere westerly,and a semi-permanent stable zone(North Indian Ocean).(2)There are six lowvalue zones for both seasonal variability index(S_(v))and monthly variability index(M_(v))globally,with a similar spatial distribution as that of the six permanent stable zones.M_(v) and S_(v) in the Arabian Sea are the highest in the world.(3)After C_(v),M_(v) and S_(v) are comprehensively considered,the six permanent stable zones have an obvious advantage in the stability of wind energy over other sea areas,with C_(v) below 0.8,M_(v) within 1.0,and S_(v) within 0.7 all the year round.(4)The global stability of offshore wind energy shows a positive climatic trend for the past four decades.C_(v),M_(v) and S_(v) have not changed significantly or decreased in most of the global ocean during 1979 to2018.That is,wind energy is flat or more stable,while the monthly and seasonal variabilities tend to shrink/smooth,which is beneficial for wind energy utilization.(5)C_(v) in the low-latitude Pacific and M_(v) and S_(v) in both the North Indian Ocean and the low-latitude Pacific have an obvious abrupt phenomenon at the end of the20th century. 展开更多
关键词 global oceans wind energy stability spatial-temporal distribution climatic trend
下载PDF
Trajectory planning for multi-robot coordinated towing system based on stability
15
作者 赵志刚 ZHAO Xiangtang +2 位作者 WEI Qizhe SU Cheng MENG Jiadong 《High Technology Letters》 EI CAS 2024年第1期43-51,共9页
Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to... Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to resist external disturbances and makes it difficult to control the trajectory of the suspended object.Based on the kinematics and statics of the multi-robot coordinated towing system with fixed base,the dynamic model of the system is established by using the Newton-Euler equations and the Udwadia-Kalaba equations.To plan the trajectories with high stability and strong control,trajectory planning is performed by combining the dynamics and stability of the towing system.Based on the dynamic stability of the motion trajectory of the suspended object,the stability of the suspended object is effectively improved through online real-time planning and offline manual adjustment.The effectiveness of the proposed method is verified by comparing the motion stability of the suspended object before and after planning.The results provide a foundation for the motion planning and coordinated control of the towing system. 展开更多
关键词 towing system unconstrained system trajectory planning dynamic stability
下载PDF
Finite Element Method Simulation of Wellbore Stability under Different Operating and Geomechanical Conditions
16
作者 Junyan Liu Ju Liu +3 位作者 Yan Wang Shuang Liu Qiao Wang Yihe Du 《Fluid Dynamics & Materials Processing》 EI 2024年第1期205-218,共14页
The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory... The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase. 展开更多
关键词 Wellbore stability finite element acidizing operation well completion
下载PDF
Stability of the Stratification of Water Bodies in the North Passage of the Yangtze River Estuary Based on the EFDC Model
17
作者 WU De’an LI Xin WANG Yigang 《Journal of Ocean University of China》 CAS CSCD 2024年第1期23-32,共10页
To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC res... To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC results,this paper derives and pro-vides the discriminative index of water body stability caused by salinity and analyzes the along-range variation in water body strati-fication stability in the North Passage of the Yangtze River Estuary and the periodic variation at a key location(bend area)based on the simulation results of the numerical model.This work shows that the water body in the bend area varies between mixed and strati-fied types,and the vertical average flow velocity has a good negative correlation with the differential velocity between the surface and bottom layers of the water body.The model simulation results validate the formulae for the stratified stability discriminant during spring tides. 展开更多
关键词 Yangtze Estuary North Passage EFDC model stratification stability salinity distribution
下载PDF
Interfacial modification using the cross-linkable tannic acid for highly-efficient perovskite solar cells with excellent stability
18
作者 Xing Gao Lirong Rong +6 位作者 Fei Wu Yen-Hung Lin Ye Zeng Junhong Tan Rongxing He Cheng Zhong Linna Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期236-244,共9页
Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caus... Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability. 展开更多
关键词 Tannic acid Defect passivation lons diffusion HYDROPHILIC stability Perovskite solar cells
下载PDF
Research on the flow stability and noise reduction characteristics of quasi-periodic elastic support skin
19
作者 Lu Chen Shao-gang Liu +5 位作者 Dan Zhao Li-qiang Dong Kai Li Shuai Tang Jin Cui Hong Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期222-236,共15页
To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction... To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures. 展开更多
关键词 Flow stability Quasi-period Flexible wall Elastic support element Hydrodynamic noise
下载PDF
Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel
20
作者 N.HUMNEKAR D.SRINIVASACHARYA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期563-580,共18页
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn... The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented. 展开更多
关键词 NANOFLUID inclined channel variable viscosity linear stability double dif-fusion porous medium
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部