In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also con...In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also convergent for stationary Stokes problem.展开更多
In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise fir...In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise first-degree polynomials and velocity vector field with piecewise second-degree polynomials with a cubic bubble function to be added. The estimators are the globally upper and locally lower bounds for the error of the finite element discretization. It is shown that the bubble part for this second-order element approximation is substituted for the other parts of the approximate solution.展开更多
A nonoverlapping domain decomposition iterative procedure is developed and analyzed for generalized Stokes problems and their finite element approximate problems in R^N(N=2,3). The method is based on a mixed-type co...A nonoverlapping domain decomposition iterative procedure is developed and analyzed for generalized Stokes problems and their finite element approximate problems in R^N(N=2,3). The method is based on a mixed-type consistency condition with two parameters as a transmission condition together with a derivative-free transmission data updating technique on the artificial interfaces. The method can be applied to a general multi-subdomain decomposition and implemented on parallel machines with local simple communications naturally.展开更多
Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general tr...Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example.展开更多
This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier tec...This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier technique and is well suited to the no-slip bound ary condition in viscous flow problems. In order to improve the accuracy of solu tions, meshes are refined according to the a posteriori error estimate. The mini -element discretization is applied to solve the generalized Stokes problem. Fin ally, some numerical results to validate this method are presented for partial d ifferential equations with Dirichlet boundary condition.展开更多
The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact ana...The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.展开更多
The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady os...The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.展开更多
In this paper, we use divergence-free wavelets to give an adaptive solution to the velocity field of the Stokes problem. We first use divergence-free wavelets to discretize the divergence-free weak formulation of the ...In this paper, we use divergence-free wavelets to give an adaptive solution to the velocity field of the Stokes problem. We first use divergence-free wavelets to discretize the divergence-free weak formulation of the Stokes problem and obtain a discrete positive definite linear system of equations whose coefficient matrix is quasi-sparse; Secondly, an adaptive scheme is used to solve the discrete linear system of equations and the error estimation and complexity analysis are given.展开更多
In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ...In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.展开更多
In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The co...In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.展开更多
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh si...A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h -- O(H2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.展开更多
Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than othe...Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than other usual formats.展开更多
Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand...Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand method with a small penalty parameter and the convergence rate of this method is two times as that of the standard method under the condition of the same order penalty parameter. The superconvergence for velocity is established as well. The results of this paper are also valid to the most of the known nonconforming finite element methods.展开更多
The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition ar...The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition are given. The stability, solvability, and convergence of the numerical scheme are discussed via the Fourier analysis and the matrix analysis methods. An improved implicit scheme is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness of the mentioned schemes展开更多
This paper presents a study of the finite depth Stokes' first problem for a thixotropic layer. The yield behavior of the thixotropic fluid in this problem is investigated for the first time. The main physical feature...This paper presents a study of the finite depth Stokes' first problem for a thixotropic layer. The yield behavior of the thixotropic fluid in this problem is investigated for the first time. The main physical features of this problem are discussed, including the flow field, the wall stress, and the depth of the yield region. It is shown that the yield region appears near the wall, and the yield surface moves from the wall into the flow region and moves back to the wall finally. In contrast to the solution of the Newtonian fluid, the velocity of the thixotropic layer generally does not increase with time monotonously during the start-up process. The classical solution of the Newtonian fluid can be recovered from our results in extreme cases.展开更多
A nonconforming rectangular finite element is presented, which satisfies the discrete B-B condition for the Stokes problem. And the element has two order convergence rate for the velocity and pressure.
This paper introduces a new stabilized finite element method for the coupled Stokes and Darcy problem based on the nonconforming Crouzeix-Raviart element. Optimal error estimates for the fluid velocity and pressure ar...This paper introduces a new stabilized finite element method for the coupled Stokes and Darcy problem based on the nonconforming Crouzeix-Raviart element. Optimal error estimates for the fluid velocity and pressure are derived. A numerical example is presented to verify the theoretical predictions.展开更多
In this paper,we present a discontinuity and cusp capturing physicsinformed neural network(PINN)to solve Stokes equations with a piecewiseconstant viscosity and singular force along an interface.We first reformulate t...In this paper,we present a discontinuity and cusp capturing physicsinformed neural network(PINN)to solve Stokes equations with a piecewiseconstant viscosity and singular force along an interface.We first reformulate the governing equations in each fluid domain separately and replace the singular force effect with the traction balance equation between solutions in two sides along the interface.Since the pressure is discontinuous and the velocity has discontinuous derivatives across the interface,we hereby use a network consisting of two fully-connected sub-networks that approximate the pressure and velocity,respectively.The two sub-networks share the same primary coordinate input arguments but with different augmented feature inputs.These two augmented inputs provide the interface information,so we assume that a level set function is given and its zero level set indicates the position of the interface.The pressure sub-network uses an indicator function as an augmented input to capture the function discontinuity,while the velocity sub-network uses a cusp-enforced level set function to capture the derivative discontinuities via the traction balance equation.We perform a series of numerical experiments to solve two-and three-dimensional Stokes interface problems and perform an accuracy comparison with the augmented immersed interface methods in literature.Our results indicate that even a shallow network with a moderate number of neurons and sufficient training data points can achieve prediction accuracy comparable to that of immersed interface methods.展开更多
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the frac...The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model.Exact solutions of velocity and stress are obtained by using the discrete in- verse Laplace transform of the sequential fractional derivatives.It is found that the effect of the fractional orders in the constitutive relationship on the flow field is signif- icant.The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate,for large times the viscoelastic effects become weak.展开更多
文摘In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also convergent for stationary Stokes problem.
基金the National Natural Science Foundation of China, the Evolvement Plan of Science and Technology of Beijing Educational Council,
文摘In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise first-degree polynomials and velocity vector field with piecewise second-degree polynomials with a cubic bubble function to be added. The estimators are the globally upper and locally lower bounds for the error of the finite element discretization. It is shown that the bubble part for this second-order element approximation is substituted for the other parts of the approximate solution.
文摘A nonoverlapping domain decomposition iterative procedure is developed and analyzed for generalized Stokes problems and their finite element approximate problems in R^N(N=2,3). The method is based on a mixed-type consistency condition with two parameters as a transmission condition together with a derivative-free transmission data updating technique on the artificial interfaces. The method can be applied to a general multi-subdomain decomposition and implemented on parallel machines with local simple communications naturally.
基金Supported by the Natural Science Foundation of China (No.10471079, 10071044) and the Research Fund of Doctoral Program of High Education by State Education Ministry of China.
文摘Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example.
文摘This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier technique and is well suited to the no-slip bound ary condition in viscous flow problems. In order to improve the accuracy of solu tions, meshes are refined according to the a posteriori error estimate. The mini -element discretization is applied to solve the generalized Stokes problem. Fin ally, some numerical results to validate this method are presented for partial d ifferential equations with Dirichlet boundary condition.
基金The project supported by the National Natural Science Foundation of China(10272067)the Doctoral Program Foundation of the Education Ministry of China(20030422046)+1 种基金the Natural Science Foundation of Shandong Province,China(Y2006A 14)the Research Foundation of Shandong University at Weihai.
文摘The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.
文摘The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.
文摘In this paper, we use divergence-free wavelets to give an adaptive solution to the velocity field of the Stokes problem. We first use divergence-free wavelets to discretize the divergence-free weak formulation of the Stokes problem and obtain a discrete positive definite linear system of equations whose coefficient matrix is quasi-sparse; Secondly, an adaptive scheme is used to solve the discrete linear system of equations and the error estimation and complexity analysis are given.
文摘In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.
基金supported by the National Key R&D Program of China(2018YFB1501001)the NSF of China(11771348)China Postdoctoral Science Foundation(2019M653579)。
文摘In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.
基金Project supported by the National Natural Science Foundation of China(Nos.10901131,10971166, and 10961024)the National High Technology Research and Development Program of China (No.2009AA01A135)the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2010211B04)
文摘A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h -- O(H2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.
基金Supported by National Natural Science Foundation of China(11371331)Supported by the Natural Science Foundation of Education Department of Henan Province(14B110018)
文摘Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
文摘Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than other usual formats.
基金Supported by the National Natural Science Foundation of China (10791203, 11271340)the Natural Science Foundation of Henan Province (112300410109)
文摘Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand method with a small penalty parameter and the convergence rate of this method is two times as that of the standard method under the condition of the same order penalty parameter. The superconvergence for velocity is established as well. The results of this paper are also valid to the most of the known nonconforming finite element methods.
基金supported by the National Natural Science Foundation of China (No. 10971175)the Scientific Research Fund of Hunan Provincial Education Department (No. 09A093)
文摘The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition are given. The stability, solvability, and convergence of the numerical scheme are discussed via the Fourier analysis and the matrix analysis methods. An improved implicit scheme is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness of the mentioned schemes
文摘This paper presents a study of the finite depth Stokes' first problem for a thixotropic layer. The yield behavior of the thixotropic fluid in this problem is investigated for the first time. The main physical features of this problem are discussed, including the flow field, the wall stress, and the depth of the yield region. It is shown that the yield region appears near the wall, and the yield surface moves from the wall into the flow region and moves back to the wall finally. In contrast to the solution of the Newtonian fluid, the velocity of the thixotropic layer generally does not increase with time monotonously during the start-up process. The classical solution of the Newtonian fluid can be recovered from our results in extreme cases.
基金Foundation item: Supported by the National Natural Science Foundation of China(10771198, 10590353) Supported by the Doctor Foundation(2008BS013) Supported by the Natural Science Foundation of Henan Province (682300410200)
文摘A nonconforming rectangular finite element is presented, which satisfies the discrete B-B condition for the Stokes problem. And the element has two order convergence rate for the velocity and pressure.
基金Project supported by the Science and Technology Foundation of Sichuan Province(No. 05GG006-006-2)
文摘This paper introduces a new stabilized finite element method for the coupled Stokes and Darcy problem based on the nonconforming Crouzeix-Raviart element. Optimal error estimates for the fluid velocity and pressure are derived. A numerical example is presented to verify the theoretical predictions.
基金supports by National Science and Technology Council,Taiwan,under research grants 111-2115-M-390-002 and 110-2115-M-A49-011-MY3,respectively.
文摘In this paper,we present a discontinuity and cusp capturing physicsinformed neural network(PINN)to solve Stokes equations with a piecewiseconstant viscosity and singular force along an interface.We first reformulate the governing equations in each fluid domain separately and replace the singular force effect with the traction balance equation between solutions in two sides along the interface.Since the pressure is discontinuous and the velocity has discontinuous derivatives across the interface,we hereby use a network consisting of two fully-connected sub-networks that approximate the pressure and velocity,respectively.The two sub-networks share the same primary coordinate input arguments but with different augmented feature inputs.These two augmented inputs provide the interface information,so we assume that a level set function is given and its zero level set indicates the position of the interface.The pressure sub-network uses an indicator function as an augmented input to capture the function discontinuity,while the velocity sub-network uses a cusp-enforced level set function to capture the derivative discontinuities via the traction balance equation.We perform a series of numerical experiments to solve two-and three-dimensional Stokes interface problems and perform an accuracy comparison with the augmented immersed interface methods in literature.Our results indicate that even a shallow network with a moderate number of neurons and sufficient training data points can achieve prediction accuracy comparable to that of immersed interface methods.
基金The project supported by the National Natural Science Foundation of China (10002003)Foundation for University Key Teacher by the Ministry of EducationResearch Fund for the Doctoral Program of Higher Education
文摘The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model.Exact solutions of velocity and stress are obtained by using the discrete in- verse Laplace transform of the sequential fractional derivatives.It is found that the effect of the fractional orders in the constitutive relationship on the flow field is signif- icant.The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate,for large times the viscoelastic effects become weak.