期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
Statistical and causes analysis of storm surges along Tianjin coast during the past 20 years
1
作者 李希彬 孙晓燕 +2 位作者 刘洋 张秋丰 牛福新 《Marine Science Bulletin》 CAS 2014年第1期15-24,共10页
Based on tidal data statistical analysis for 20 years of Tanggu Marine Environmental Monitoring Station from 1991 to 2010, we concluded that an average of nearly 10 days of 100 cm above water increase took place at Ti... Based on tidal data statistical analysis for 20 years of Tanggu Marine Environmental Monitoring Station from 1991 to 2010, we concluded that an average of nearly 10 days of 100 cm above water increase took place at Tianjin coast every year. The maximum high tide and average tide of Tianjin coast occurred in summer and autumn, and the maximum water increase also occurred in summer and autumn. Days with water increase more than 100 cm mostly occurred in spring, autumn and winter. Then we summarized the causes of coastal storm surge disaster in Tianjin based on astronomical tide factors, meteorological factors, sea level rise, land subsidence, and geographic factors, et al. Finally, we proposed storm surge disaster prevention measures. 展开更多
关键词 TIANJIN storm surge water increase statistical analysis cause analysis
下载PDF
High Resolution Regional and Coastal Operational Storm Surges/Tide Forecasting System in Korea
2
作者 Sung Hyup You Woo Jeong Lee +2 位作者 Ji Hye Kwun Jang-Won Seo and Sang Boom Ryoo 《Journal of Environmental Science and Engineering(B)》 2012年第3期324-335,共12页
This study was performed to compare storm surges/tide simulated by the regional and coastal storm surges/tide forecast system (RTSM (regional tide/storm surges model), CTSM (coastal tide/storm surges model)) usi... This study was performed to compare storm surges/tide simulated by the regional and coastal storm surges/tide forecast system (RTSM (regional tide/storm surges model), CTSM (coastal tide/storm surges model)) using two different inputs from weather models (RDAPS (Regional Data Assimilation and Prediction System) and KWRF (Korea Weather and Research Forecasting)) during two typhoons that occurred between 2007 and 2008. Both the RDAPS and KWRF are the operational weather forecasting system in KMA (Korea Meteorological Administration). The horizontal resolutions of RDAPS and KWRF are 30 and 10 km, respectively. The storm surges/tide was hind casted using sea wind and pressure fields of two Typhoons which was approaching Korean Peninsula. The CTSM using input from KWRF simulate very well the storm surges/tide pattern in the complex coastal areas. The result showed that the storm surges by the coastal storm surges/tide model with high resolution input was in well agreement with the observed sea level occurred by high tide and storm surges in the coastal areas. 展开更多
关键词 storm surges/tide RTSM CTSM RDAPS KWRF KMA.
下载PDF
A Numerical Study of the Effects of Coastal Geometry in the Bohai Sea on Storm Surges Induced by Cold-Air Outbreaks 被引量:6
3
作者 ZHAOPeng JIANG Wensheng 《Journal of Ocean University of China》 SCIE CAS 2011年第1期9-15,共7页
Strom surges are not only determined by the atmospheric forcing,but also influenced by the coastal geometry and bathymetry.The Bohai Sea,as one of China’s marginal seas,is seriously harmed by storm surges,especially ... Strom surges are not only determined by the atmospheric forcing,but also influenced by the coastal geometry and bathymetry.The Bohai Sea,as one of China’s marginal seas,is seriously harmed by storm surges,especially those caused by cold-air outbreaks.As the coastline of the Bohai Sea has changed evidently these years,storm surges may have new characteristics due to the changes in the local geometry.This paper aims to find out these new characteristics by primarily investigating the influence of the changes in the local geometry on storm surges with numerical methods.20 scenarios were constructed based on the track and inten-sity of the cold-air outbreaks to describe the actual situation.By analyzing the model results of the control scenarios,it is found that the main changes of the maximum surge elevation occur in the Bohai Bay and the Laizhou Bay.At the top of the Bohai Bay,the maximum surge elevation is obviously decreased,while in the Laizhou Bay,it is enhanced by the growing Yellow River Delta.This,however,does not suggest that the storm surges in the Laizhou Bay become more serious.A comparison of the risk assessment of storm surges in the Tanggu,Huanghua and Yangjiaogou regions shows that the risk of storm surges in these coastal areas is lightened by the evolvement of the coastal geometry.Particularly near Yangjiaogou,though the maximum surge elevation becomes higher to subject more areas to risk,the risk is still reduced by the evolvement of the Yellow River Delta. 展开更多
关键词 storm surge cold-air outbreak Bohai Sea Caofeidian: Yellow River Delta
下载PDF
A Preliminary Study on the Intensity of Cold Wave Storm Surges of Laizhou Bay 被引量:2
4
作者 LI Xue DONG Sheng 《Journal of Ocean University of China》 SCIE CAS 2016年第6期987-995,共9页
Abstract Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and fiat topography. In order to evaluate the intensity... Abstract Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and fiat topography. In order to evaluate the intensity of c01d wave storm surge, the hindcast of ma- rine elements induced by cold waves in Laizhou Bay from 1985 to 2004 is conducted using a cold wave storm surge-wave coupled model and the joint return period of extreme water level, concomitant wave height, and concomitant wind speed are calculated. A new criterion of cold wave storm surge intensity based on such studies is developed. Considering the frequency of cold wave, this paper introduces a Poisson trivariate compound reconstruction model to calculate the joint return period, which is closer to the reality. By using the newly defined cold wave storm surge intensity, the 'cold wave grade' in meteorology can better describe the severity of cold wave storm surges and the warning level is well corresponding to different intensities of cold wave storm surges. Therefore, it provides a proper guidance to marine hydrological analysis, disaster prevention and marine structure design in Laizhou Bay. 展开更多
关键词 Laizhou Bay cold wave grade Poisson trivariate compound reconstruction model cold wave storm surge intensity
下载PDF
Effects of winds,tides and storm surges on ocean surface waves in the Sea of Japan 被引量:1
5
作者 ZHAO Wei TIAN Jiwei +1 位作者 LI Peiliang HOU Yijun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2007年第3期9-21,共13页
Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forc... Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyS, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions. 展开更多
关键词 ocean surface wave Sea of Japan winter storm TIDE storm surge
下载PDF
Numerical study on the spatially varying drag coefficient in simulation of storm surges employing the adjoint method 被引量:1
6
作者 范丽丽 刘猛猛 +1 位作者 陈海波 吕咸青 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第3期702-717,共16页
From the simulation of storm surges resulting from Typhoons 7203 and 8509 in the Bohai Sea, Yellow Sea and East China Sea, water level data at tide stations are assimilated into a two-dimensional storm surge model, to... From the simulation of storm surges resulting from Typhoons 7203 and 8509 in the Bohai Sea, Yellow Sea and East China Sea, water level data at tide stations are assimilated into a two-dimensional storm surge model, to study the spatially varying drag coefficient (DC) by employing the adjoint method. In this study, the DC at some grid points is uniformly selected as the independent DC, while the DC at other grid points is obtained through linear interpolation of the independent DC. The DC at independent points is optimized by employing the adjoint assimilation method, and global optimization is achieved by optimizing the independent DC. To demonstrate the method's performance, three comparative experiments are carried out. In the first experiment, the DC is treated as a constant. In the second and third experiments, the DC is derived using an empirical formula. Comparing the experimental results, it is found that the simulation accuracy for both Typhoons 7203 and 8509 increases greatly when optimizing the independent DC. However, the number of independent points makes no great difference to the precision of simulation. Moreover, the DC inverted from Typhoons 7203 and 8509 differs in some sea areas because of the different typhoon tracks. However, the spatial distribution of the inverted DC, for both Typhoons 7203 and 8509, demonstrates a clear effect of the DC on the storm surge modeling near the coastal areas where the DC is highest or lowest. 展开更多
关键词 adjoint method storm surge TYPHOON drag coefficient
原文传递
Numerical Simulation and Analysis of Storm Surges Under Different Extreme Weather Event and Typhoon Experiments in the South Yellow Sea 被引量:1
7
作者 ZHANG Mingzong ZHOU Chunyan +2 位作者 ZHANG Jisheng ZHANG Xinzhou TANG Zihao 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第1期1-14,共14页
In this study,a coupled tide-surge-wave model was developed and applied to the South Yellow Sea.The coupled model simulated the evolution of storm surges and waves caused by extreme weather events,such as tropical cyc... In this study,a coupled tide-surge-wave model was developed and applied to the South Yellow Sea.The coupled model simulated the evolution of storm surges and waves caused by extreme weather events,such as tropical cyclones,cold waves,extratropical cyclones coupled with a cold wave,and tropical cyclones coupled with a cold wave.The modeled surge level and significant wave height matched the measured data well.Simulation results of the typhoon with different intensities revealed that the radius to the maximum wind speed of a typhoon with 1.5 times wind speed decreased,and its influence range was farther away from the Jiangsu coastal region;moreover,the impact on surge levels was weakened.Thereafter,eight hypothetical typhoons based on Typhoon Chan-hom were designed to investigate the effects of varying typhoon tracks on the extreme value and spatial distribution of storm surges in the offshore area of Jiangsu Province.The typhoon along path 2 mainly affected the Rudong coast,and the topography of the Rudong coast was conducive to the increase in surge level.Therefore,the typhoon along path 2 induced the largest surge level,which reached up to 2.91 m in the radial sand ridge area.The maximum surge levels in the Haizhou Bay area and the middle straight coastline area reached up to 2.37 and 2.08 m,respectively.In terms of typhoons active in offshore areas,the radial sand ridge area was most likely to be threatened by typhoon-induced storm surges. 展开更多
关键词 Jiangsu coast South Yellow Sea extreme weather events storm surge numerical experiments
下载PDF
A numerical study on characteristics of the maximum storm surges at Tanggu station
8
作者 GENG Shanshan SHU Yuting YUE Xinyang 《Marine Science Bulletin》 2022年第1期47-55,共9页
Using the measured data to analyze the change rule of water increase and decrease in the coastal waters of Tanggu station.The water increase caused by the temperate cyclone in winter accounts for a higher frequency in... Using the measured data to analyze the change rule of water increase and decrease in the coastal waters of Tanggu station.The water increase caused by the temperate cyclone in winter accounts for a higher frequency in the whole year,and the water increase caused by the tropical cyclone in summer is larger,which brings serious storm surge disasters.This paper determines the maximum tropical cyclone parameters through statistics of historical typhoon processes,establishes a numerical model of storm water increase and decrease,and calculates the maximum possible water increase caused by typhoons in this sea area,and the water increase value is 3.6 m.A gale sensitivity experiment was constructed,and the maximum possible increase or decrease of water in the gale was calculated. 展开更多
关键词 Tanggu Station maximum possible increase or decrease of water storm surge
下载PDF
A typhoon-induced storm surge numerical model with GPU acceleration based on an unstructured spherical centroidal Voronoi tessellation grid
9
作者 Yuanyong Gao Fujiang Yu +2 位作者 Cifu Fu Jianxi Dong Qiuxing Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期40-47,共8页
Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important me... Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects. 展开更多
关键词 typhoon-induced storm surge numerical model GPU acceleration unstructured grid spherical centroidal Voronoi tessellation(SCVT)
下载PDF
Trend of Storm Surge Induced by Typical Landfall Super Typhoons During 1975–2021 in the Eastern China Sea
10
作者 LUO Feng WANG Yi +3 位作者 TAO Aifeng SHI Jian WANG Yongzhi ZHANG Chi 《Journal of Ocean University of China》 CAS CSCD 2024年第2期277-286,共10页
Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast ... Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast and thus cause casualties,economic losses,and environmental damage.Using a 3D tidal model,we reconstructed the typhoon(TY)wind field to simulate the storm surge induced by typical STYs.The TY activity was then analyzed using historical data.Results showed a downtrend of varying degrees in the annual frequency of STYs and TCs in the Western North Pacific(WNP)Basin,with a significant trend change observed for TCs from 1949 to 2021.A large difference in the interannual change in frequency was found between STYs and TCs in the WNP and Eastern China Sea(ECS).Along the coast of EC,the frequency of landfall TCs showed a weak downtrend,and the typical STYs showed reverse micro growth with peak activity in August.Zhejiang,Fujian,and Taiwan were highly vulnerable to the frontal hits of typical STYs.Affected by climate change,the average lifetime maximum intensity(LMI)locations and landfall locations of typical STYs in the ECS basin showed a significant poleward migration trend.In addition,the annual average LMI and accumulated cyclone energy showed an uptrend,indicating the increasing severity of the disaster risk.Affected by the typical STY activity in the ECS,the maximum storm surge area also showed poleward migration,and the coast of North China faced potential growth in high storm surge risks. 展开更多
关键词 storm surge super typhoons tropical cyclones eastern China Sea poleward migration
下载PDF
Risk assessment of coastal flooding disaster by storm surge based on Elevation-Area method and hydrodynamic models:Taking Bohai Bay as an example
11
作者 Fu Wang Xue-zheng Liu +3 位作者 Yong Li Heng Yu Ming-zheng Wen Yun-zhuang Hu 《China Geology》 CAS CSCD 2024年第3期494-504,共11页
The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coast... The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge. 展开更多
关键词 storm surge ROMS Elevation-Area method Numerical simulation Land subsidence Flooding disaster Sea level rise Marine geological survey engineering Geological disaster survey engineering Bohai Bay
下载PDF
Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea 被引量:2
12
作者 XU JunLi ZHANG YuHong +2 位作者 CAO AnZhou LIU Qiang LV XianQing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第6期1308-1316,共9页
A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impa... A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impacts of tide-surge interactions on storm surge elevations, Typhoon 7203 was assumed to arrive at 12 different times, with all other conditions remaining constant. This allowed simulation of tide and total water levels for 12 separate cases. Numerical simulation results for Yingkou, Huludao, Shijiusuo, and Lianyungang tidal stations were analyzed. Model results showed wide variations in storm surge elevations across the 12 cases. The largest difference between 12 extreme storm surge elevation values was of up to 58 cm and occurred at Yingkou tidal station. The results indicate that the effects of tide-surge interactions on storm surge elevations are very significant. It is therefore essential that these are taken into account when predicting storm surge elevations. 展开更多
关键词 storm surges Astronomical tides Tide-surge interactions Typhoon 7203 Coupled tide-surge model
原文传递
Evaluation of farmland losses from sea level rise and storm surges in the Pearl River Delta region under global climate change 被引量:2
13
作者 康蕾 马丽 刘毅 《Journal of Geographical Sciences》 SCIE CSCD 2016年第4期439-456,共18页
The Pearl River Delta on China's coast is a region that is seriously threatened by sea level rise and storm surges induced by global climate change, which causes flooding of large areas of farmland and huge agricu... The Pearl River Delta on China's coast is a region that is seriously threatened by sea level rise and storm surges induced by global climate change, which causes flooding of large areas of farmland and huge agricultural losses. Based on relevant research and experience, a loss evaluation model of farmland yield caused by sea level rise and storm surges was established. In this model, the area of submerged farmland, area of crops, and per unit yield of every type of crop were considered, but the impact of wind, flooding time, changes in land use and plant structure were not considered for long-term prediction. Taking the Pearl River Delta region in Guangdong as the study area, we estimated and analyzed the spatial distribution and loss of farmlands for different scenarios in the years 2030, 2050, and 2100, using a digital elevation model, land-use data, local crop structure, rotation patterns, and yield loss ratios for different submerged heights obtained from field survey and questionnaires. The results show that the proportion of submerged farmlands and losses of agricultural production in the Pearl River Delta region will increase gradually from 2030 to 2100. Yangjiang, Foshan, and Dongguan show obvious increases in submerged farmlands, while Guangzhou and Zhuhai show slow increases. In agricultural losses, vegetables would sustain the largest loss of production, followed by rice and peanuts. The greatest loss of rice crops would occur in Jiangmen, and the loss of vegetable crops would be high in Shanwei and Jiangmen. Although losses of peanut crops are generally lower, Jiangmen, Guangzhou, and Shanwei would experience relatively high losses. Finally, some measures to defend against storm surges are suggested, such as building sea walls and gates in Jiangmen, Huizhou, and Shanwei, enforcing ecological protection to reduce destruction from storm surges, and strengthening disaster warning systems. 展开更多
关键词 sea level rise storm surge submerged farmland loss of farmland Pearl River Delta
原文传递
Assessment of Storm Surge and Flood Inundation in Chittagong City of Bangladesh Based on ADCIRC and GIS
14
作者 LIU Yuxin LI Songtao WANG Zhifeng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1473-1486,共14页
Coastal flooding caused by tropical cyclones has long been a major threat to life,property,and infrastructure in coastal zones.This study assessed the risk of flooding in Chittagong,southeastern Bangladesh,under extre... Coastal flooding caused by tropical cyclones has long been a major threat to life,property,and infrastructure in coastal zones.This study assessed the risk of flooding in Chittagong,southeastern Bangladesh,under extreme sea level scenarios caused by high astronomical tides and storm surges.The Jelesnianski typhoon model and the ADvanced CIRCulation hydrodynamic model were used to simulate 91 typhoons that occurred in the Bay of Bengal between 1981 and 2017,and observational data were used for model validation.The inundation model was based on a digital elevation model and a seed spread algorithm,and a geographical information system was used to visualize the flood risk.Under four scenarios,the changes in flood levels caused by sea level rise had no signifi-cant influence on the extent of flooding in Chittagong.At flood levels of 8.82m(50-year storm surge without sea level rise)and 8.89 m(50-year storm surge with sea level rise),the maximum estimated area of inundation was 11.35 km^(2).The western coastal and southeastern river coastal plain areas of Chittagong have the highest risk of inundation due to their low-lying terrain.At flood levels of 9.83m(100-year storm surge without sea level rise)and 9.97m(100-year storm surge with sea level rise),the maximum simulated flood extent was 36.44km^(2).Simulated floodwaters propagated in a south–north direction,and most of the northern areas of the city are at risk of inundation under these scenarios. 展开更多
关键词 TYPHOON storm surge extreme sea level INUNDATION
下载PDF
Sedimentary record of a late Holocene storm event in Laizhou Bay,Bohai Sea,China
15
作者 Zhenqiao LIU Liang ZHOU +2 位作者 Shu GAO Longjiang MAO Peng LU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第3期909-920,共12页
The Bohai Sea is influenced by numerous extreme oceanic wave events in history.However,it is often difficult to determine the types of these events due to the lack of detailed historical records,causing uncertainty in... The Bohai Sea is influenced by numerous extreme oceanic wave events in history.However,it is often difficult to determine the types of these events due to the lack of detailed historical records,causing uncertainty in the reconstruction of historical coastal disasters.We investigated an anomalous sand layer in the Xiliyu Village by the coast of Laizhou Bay,Shandong,from which an extreme event deposit was identified using a multi-proxy approach including grain size distribution,geochemistry,and magnetic susceptibility.This event was dated 2700–3100 a bp,and caused inundation of a large coastal area of Laizhou Bay.By comparing historical records with instrumental data,we believe that the event deposit was generated by a severe storm surge with wind speed of>34.9 m/s. 展开更多
关键词 event layer storm surge deposit multiple proxy analysis winter storms Laizhou Bay
下载PDF
Assessment of typhoon storm surge disaster scale based on expansion model
16
作者 Guilin LIU Xiuxiu NONG +3 位作者 Yi KOU Fang WU Daniel ZHAO Zongbing YU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期518-531,共14页
The South China Sea suffers strongly from the typhoon storm surge disasters in China,and its northern coastal areas are facing severe risks.Therefore,it is necessary and urgent to establish an assessment system for ra... The South China Sea suffers strongly from the typhoon storm surge disasters in China,and its northern coastal areas are facing severe risks.Therefore,it is necessary and urgent to establish an assessment system for rating typhoon storm surge disaster.We constructed an effective and reliable rating assessment system for typhoon storm surge disaster based on the theories of over-threshold,distribution function family,and composite extreme value.The over-threshold sample was used as the basis of data analysis,the composite extreme value expansion model was used to derive the design water increment,and then the disaster level was delineated based on the return period level.The results of the extreme value model comparison show that the Weibull-Pareto distribution is more suitable than the classical extreme value distribution for fitting the over-threshold samples.The results of the return period projection are relatively stable based on different analysis samples.Taking the 10 typhoon storm surges as examples,they caused landfall in the Guangdong area in the past 10 years.The results of the assessment ranking indicate that the risk levels based on the return period levels obtained from different distributions are generally consistent.When classifying low-risk areas,the classification criteria of the State Oceanic Administration,China(SOA,2012)are more conservative.In the high-risk areas,the results of the assessment ranking based on return period are more consistent with those of the SOA. 展开更多
关键词 risk classification South China Sea typhoon storm surge extreme value expansion over threshold sampling
下载PDF
Numerical Simulation of the Influence of Mean Sea Level Rise on Typhoon Storm Surge in the East China Sea 被引量:3
17
作者 高志刚 韩树宗 +2 位作者 刘克修 郑运霞 于华明 《Marine Science Bulletin》 CAS 2008年第2期36-49,共14页
In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED... In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED to simulate storm surge is validated by comparing model result with observed data. Sensitivity experiments are designed to study the influence of sea level rise on typhoon storm surge. Numerical experiment shows that influence of mean sea level rise on typhoon storm surge is non-uniform spatially and changes as typhoon process differs. Maybe fixed boundary method would weaken the influence of mean sea level rise on storm surge, and free boundary method is suggested for the succeeding study. 展开更多
关键词 storm surge simulation ECOMSED model East China Sea sea level rise
下载PDF
Numerical simulation of typhoon- induced storm surge on the coast of Jiangsu Province,China,based on coupled hydrodynamic and wave models 被引量:2
18
作者 徐宿东 殷锴 +1 位作者 黄文锐 郑炜 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期489-494,共6页
In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ... In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions. 展开更多
关键词 coast of Jiangsu Province typhoon storm surge advanced circulation(ADCIRC)hydrodynamic model simulating waves nearshore(SWAN) model coast of Jiangsu Province typhoon storm surge advanced circulation(ADCIRC)hydrodynamic model simulating waves nearshore(SWAN) model
下载PDF
A numerical study on the impact of tidal waves on the storm surge in the north of Liaodong Bay 被引量:5
19
作者 KONG Xiangpeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第1期35-41,共7页
A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined... A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay. 展开更多
关键词 Liaodong Bay tidal wave storm surges numerical study TYPHOON
下载PDF
Predict typhoon-induced storm surge deviation in a principal component back-propagation neural network model 被引量:1
20
作者 过仲阳 戴晓燕 +1 位作者 栗小东 叶属峰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期219-226,共8页
To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We appl... To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge. 展开更多
关键词 TYPHOON storm surges forecasts principal component back-propagation neural networks(PCBPNN) Changjiang (Yangtze) River estuary
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部