期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
A Modified Molecular Structural Mechanics Method for Analysis of Carbon Nanotubes 被引量:1
1
作者 Ming-yuan Huang Hai-bo Chen +2 位作者 Ji-nan Lü Pin Lü Pei-qiang Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第4期286-290,共5页
A modified molecular structural mechanics method, based on molecular mechanics and similar to the finite element method, was developed. The energy of a system was expressed by the force field functions of the molecula... A modified molecular structural mechanics method, based on molecular mechanics and similar to the finite element method, was developed. The energy of a system was expressed by the force field functions of the molecular mechanics. Under the small deformation assumption and by the principle of minimum potential energy, the system function was established. The properties of tension and bending of single-walled carbon nanotubes were analyzed. The Young's modulus is about 0.36 TPa nm, which agrees perfectly with the results of previous analysis by other researchers. It is found, for the first time, that the Young's moduli, for Zigzag nanotubes, are different from each other when the system energy was expressed as the sum of two or three individual energy terms in molecular mechanics. Whereas, the Young's moduli were the same for the Armchair nanotubes. It is found, when simulating the bending, that the deflections are closer to the theoretical ones, of the classical elasticity, when the diameter of the carbon nanotube increases. 展开更多
关键词 Carbon nanotube Molecular mechanics Molecular structural mechanics method
下载PDF
Analysis of static structural mechanics of vertical axis wind turbine with lift-drag combined starting structures
2
作者 QU Chunming FENG Fang +2 位作者 LI Yan BAI Yuedi ZHAO Bin 《排灌机械工程学报》 CSCD 北大核心 2021年第9期923-928,共6页
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo... The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs. 展开更多
关键词 vertical axis wind turbine finite element analysis static structural mechanics lift-drag combined starting structure model analysis
下载PDF
An 8-Node Plane Hybrid Element for StructuralMechanics Problems Based on the Hellinger-Reissner Variational Principle
3
作者 Haonan Li WeiWang +1 位作者 Quan Shen Linquan Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1277-1299,共23页
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat... The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy. 展开更多
关键词 8-node plane hybrid element Hellinger-Reissner variational principle locking behaviors structural mechanics problems
下载PDF
A review of Al-based material dopants for high-performance solid state lithium metal batteries
4
作者 Ying Tian Weicui Liu +6 位作者 Tianwei Liu Xiaofan Feng Wenwen Duan Wen Yu Hongze Li Nanping Deng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期244-261,共18页
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi... As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs. 展开更多
关键词 Al-based material dopants Solid state lithium metal batteries Solid-state electrolytes Action mechanisms and structure designs Optimization strategies
下载PDF
A systematic review of rigid-flexible composite pavement
5
作者 Zhaohui Liu Shiqing Yu +2 位作者 You Huang Li Liu Yu Pan 《Journal of Road Engineering》 2024年第2期203-223,共21页
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ... Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design. 展开更多
关键词 Rigid-flexible composite pavement structural mechanical properties Compression-shear failure Integrated design of structure and material
下载PDF
Structural Synthesis of a Class of 2R2T Hybrid Mechanisms 被引量:5
6
作者 TIAN Chunxu FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期703-709,共7页
Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially ... Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially for the four degrees of freedom(DOF) hybrid mechanisms.In order to develop a manipulator with additional constraints,a class of important spatial mechanisms with coupling chains(CCs) whose motion type is two rotations and two translations(2R2T) is presented.Based on screw theory,the combination of different types of limbs which are used to construct parallel mechanisms and coupling chains is proposed.The basic types of the general parallel mechanisms and geometric conditions of the kinematic chains are given using constraint synthesis method.Moreover,the 2R2T motion pattern hybrid mechanisms which are derived by adding coupling chains between different serial kinematic chains(SKCs) of the corresponding parallel mechanisms are presented.According to the constraint analysis of the mechanisms,the movement relationship of the moving platform and the kinematic chains is derived by disassembling the coupling chains.At last,fourteen novel hybrid mechanisms with two or three serial kinematic chains are presented.The proposed novel hybrid mechanisms and construction method enrich the family of the spatial mechanisms and provide an instruction to design more complex hybrid mechanisms. 展开更多
关键词 parallel mechanisms structural synthesis hybrid mechanisms screw theory
下载PDF
Research on the Structural Rigidity Characteristics of a Reconfigurable TBM Thrust Mechanism 被引量:3
7
作者 Younan Xu Xinjun Liu Jiyu Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期35-47,共13页
To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic... To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM. 展开更多
关键词 Reconfigurable TBM thrust mechanism structural rigidity characteristics Configuration matrix Patternvector Kinematic harmonizing equation Dynamic compatible equation structural stiffness equations
下载PDF
Mechanically Driven Alloying and Structural Evolution of Nanocrystalline Fe_(60)Cu_(40) Powder 被引量:1
8
作者 Yuanda DONG and Xueming MA(School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China)Yuanzheng YANG(Dept. of Mechanical Engineering(2), South China University of Technology, Guangzhou 510641, China)Fangxin LIU and Genmiao WA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第4期354-358,共5页
Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and exten... Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe 展开更多
关键词 Mechanically Driven Alloying and structural Evolution of Nanocrystalline Fe MA CU POWDER Figure
下载PDF
The Mechanism of Structural Control of Ore Formation and Geochemical Characteristics in the Massive Sulfide Deposits of the Wushan Copper Ore Field,Jiangxi 被引量:1
9
作者 Liu Xun Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing Zhang Zhongmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1990年第3期261-274,共14页
The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural... The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center. 展开更多
关键词 The Mechanism of structural Control of Ore Formation and Geochemical Characteristics in the Massive Sulfide Deposits of the Wushan Copper Ore Field JIANGXI
下载PDF
Effects of mechanical activation on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation tailings 被引量:3
10
作者 Ermolovich E.A. Ermolovich O.V. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1043-1049,共7页
The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separa... The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separation process were studied using X-ray and laser diffraction methods. The results revealed the relationship between variations in the mean particle size of activated powders and the milling time. The crystallite size, microstrain, lattice parameters and unit cell volumes were determined for different milling times in powder samples of quartz, hematite, dolomite, and magnetite from the beneficiation tailings. The main trends in the variation of the crystallite size of quartz, hematite, dolomite, and magnetite as a function mean particle size of powder samples were revealed. Changes in the particle shape as a function of the activation time was also investigated. 展开更多
关键词 Ferruginous quartzite beneficiation tailings Mechanical activation Crystallites Planetary mill Microstructure structural changes
下载PDF
Structural Evolution of Fullerene during Mechanical Milling
11
作者 Z. G.Liu H. Ohi K. Tsuchiya and M. Umemoto(Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho,Toyohashi 441-8580, Japan To whom correspondence should be addressedE-mail: liuzg@umelab-61.tutpse.tut.ac.jp) K.Mas 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第5期405-409,共5页
Mechanical milling of fullerene (C60(C70)) was investigated to understand the structural evolu-tion. Mechanical milling could not destroy the molecular structure of C60(C70), while the longrange periodicity of the fCc... Mechanical milling of fullerene (C60(C70)) was investigated to understand the structural evolu-tion. Mechanical milling could not destroy the molecular structure of C60(C70), while the longrange periodicity of the fCc crystalline structure was easiIy damaged. Longer miIIing time couldresult in the formation of C60(C70) polymer, including C60 dimer. 展开更多
关键词 FIGURE structural Evolution of Fullerene during Mechanical Milling WANG
下载PDF
Structural and Magnetic Properties of Mechanically Alloyed Nd_(15)Fe_(70)T_(15)N_δ(T=V,Mo) Magnets
12
作者 Xinguo ZHAO Zhidong ZHANG +1 位作者 Wei LIU Qun WAN and Xaokai SUN(Institute of Metal Research, Chinese Academy f Sciences, Shenyang, 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第1期1-4,共4页
Structural and magnetic properties of Nd15Fe70T15Nδ(T=V, Mo) alloys, made by mechanical alloying (MA) followed by heat-treatment and nitriding, have been investigated systematically.Effects of annealing temperature o... Structural and magnetic properties of Nd15Fe70T15Nδ(T=V, Mo) alloys, made by mechanical alloying (MA) followed by heat-treatment and nitriding, have been investigated systematically.Effects of annealing temperature on the structure and magnetic properties of the materials were studied by means of X-ray diffraction, AC susceptibility and high field magnetization measurements. Under pure argon atmosphere, the optimum temperatures for the heat treatment are found to be 75 and 850℃ for Nd15Fe7015Nδ and Nd15Fe70Mo15Nδ respectively. Correspondingly, the following magnetic properties are achieved : (1) Nd15Fe70V15Nδ:Br=0.63 T,,HC=8.01kA/cm (10.1 kOe), (BH )max=50.3 kJ/m3 (6 32 MGOe), (2) Nd15Fe70Mo15Nδ :Br=0.42 T. iHc=5.6 kA/cm (7.4 kOe), (BH )max=26.6 kJ/m3 (3.34 MGOe) 展开更多
关键词 FE T=V Mo T MAGNETS structural and Magnetic Properties of Mechanically Alloyed Nd
下载PDF
Supply-Side Structural Reforms of China's Industries
13
作者 黄群慧 《China Economist》 2017年第5期14-21,共8页
Supply-side structural reforms are structural adjustments and institutional reforms to address the mismatch between supply and demand and improve TFP. The mismatch is exhibited at the supply side and arises from struc... Supply-side structural reforms are structural adjustments and institutional reforms to address the mismatch between supply and demand and improve TFP. The mismatch is exhibited at the supply side and arises from structural contradictions and must be addressed through reforms. Supply-side structural reforms can be analyzed at the levels of firms, industries and government to arrive at theoretical and systematic conclusions that offer practical guidance. Based on this perspective, this paper proposes policy recommendations on how to deal with zombie firms, reduce cost for manufacturing companies, deepen SOE reforms, eliminate overcapacity, implement "Made in China 2025" and Internet+ strategies, promote Beijing-l^anjin-Hebei integrated development, as well as develop the Yangtze River Economic Belt and the old industrial bases of the northeast. 展开更多
关键词 supply-side structural reforms economic structure momentum structure andinstitutional mechanisms
下载PDF
Review of the book "Probabilistic Mechanics of Quasibrittle Structures"
14
作者 Huajian Gao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期179-180,共2页
Reliability-based structural analysis and design are of paramount importance since no structures can be designed to be risk-free.It has been generally accepted that the design of engineering structures must often guar... Reliability-based structural analysis and design are of paramount importance since no structures can be designed to be risk-free.It has been generally accepted that the design of engineering structures must often guarantee an extremely low failure risk on the order of 10^(-6),which is difficult to achieve through direct verification by histogram testing or stochastic computations. 展开更多
关键词 "Probabilistic mechanics of Quasibrittle Structures" BOOK
下载PDF
A Modifi ed Molecular Structure Mechanics Method for Analysis of Graphene
15
作者 华军 LI Dongbo +3 位作者 ZHAO Dong LIANG Shengwei LIU Qinlong JIA Ruiyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1172-1178,共7页
Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modifi ed molecular structure mechanics method was developed to improve the original one, that is, the se... Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modifi ed molecular structure mechanics method was developed to improve the original one, that is, the semi-rigid connections were used to model the bond angle variations between the C-Cbonds in graphene. The simulated results show that the equivalent space frame model with semi-rigid connections for graphene proposed in this article is a simple, efficient, and accurate model to evaluate the equivalent elastic properties of graphene. Though the present computational model of the semi-rigid connected space frame is only applied to characterize the mechanical behaviors of the space lattices of graphene, it has more potential applications in the static and dynamic analyses of graphene and other nanomaterials. 展开更多
关键词 graphene molecular structure mechanics semi-rigid connections mechanical properties
原文传递
Editorial:Mechanics of intelligent materials and structures
16
作者 Jie Wang Weiqiu Chen You-He Zhou 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第2期59-60,共2页
Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil stru... Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil structures, medical devices, information storage, energy harvesting and so on. It is of academic challenge to fully understand the complex multi-field coupling behaviors of various smart materials and structures, and of engineering sig- nificance to enhance the performance and reliability of these materials and structures in industrial applications. The papers in the special topic of Mechanics of Intelligent Materials and Structures focus on the understanding of the electromechanical, magneto-elastic, and magneto-rheological coupling behav- iors and properties of smart materials and structures for applications in vibration control, resonators, and various functional devices. 展开更多
关键词 Editorial:mechanics of intelligent materials and structures
下载PDF
The action mechanisms and structures designs of F-containing functional materials for high performance oxygen electrocatalysis 被引量:1
17
作者 Gang Wang Shuwei Jia +7 位作者 Hongjing Gao Yewen Shui Jie Fan Yixia Zhao Lei Li Weimin Kang Nanping Deng Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期377-397,I0010,共22页
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent... Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts. 展开更多
关键词 Fluorine-containing functional materials Action mechanisms and structure designs Density functional theory Oxygen evolution reaction Oxygen reduction reaction
下载PDF
A bionic controllable strain membrane for cell stretching at air–liquid interface inspired by papercutting 被引量:1
18
作者 Yuanrong Li Mingjun Xie +4 位作者 Shang Lv Yuan Sun Zhuang Li Zeming Gu Yong He 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期486-499,共14页
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and... Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism. 展开更多
关键词 biomimetic air-blood barrier composite material design controllable mechanical stimulus structure
下载PDF
Comparison of large deformation failure control method in a deep gob-side roadway: A theoretical analysis and field investigation
19
作者 WANG Jiong LIU Peng +2 位作者 HE Man-chao LIU Yi-peng DU Chang-xin 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3084-3100,共17页
Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has alw... Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has always significantly influenced deep mining safety.In this article we used the research background of the large deformation failure roadway of Fa-er Coal Mine in Guizhou Province of China to propose two control methods:bolt-cable-mesh+concrete blocks+directional energy-gathering blasting(BCM-CBDE method)and 1st Generation-Negative Poisson’s Ratio(1G NPR)cable+directional energy-gathering blasting+dynamic pressure stage support(πgirder+single hydraulic prop+retractable U steel)(NPR-DEDP method).Meantime,we compared the validity of the large deformation failure control method in a deep gob-side roadway based on theoretical analysis,numerical simulations,and field experiments.The results show that directional energy-gathering blasting can weaken the pressure acting on the concrete blocks.However,the vertical stress of the surrounding rock of the roadway is still concentrated in the entity coal side and the concrete blocks,showing a’bimodal’distribution.BCM-CBDE method cannot effectively control the stability of the roadway.NPR-DEDP method removed the concrete blocks.It shows using the 1G NPR cable with periodic slipping-sticking characteristics can adapt to repeated mining disturbances.The peak value of the vertical stress of the roadway is reduced and transferred to the deep part of the surrounding rock mass,which promotes the collapse of the gangue in the goaf and fills the goaf.The pressure of the roadway roof is reduced,and the gob-side roadway is fundamentally protected.Meantime,the dynamic pressure stage support method withπgirder+single hydraulic prop+retractable U steel as the core effectively protects the roadway from dynamic pressure impact when the main roof is periodically broken.After the on-site implementation of NPR-DEDP method,the deformation of the roadway is reduced by more than 45%,and the deformation rate is reduced by more than 50%. 展开更多
关键词 Deep gob-side roadway Deformation failure control Roof structure mechanical model Stress field distribution Mining safety .Failure mode.
原文传递
"Fengqiao Model" and the Structural Changes of Dispute Resolution Mechanisms in China
20
作者 PENG Xiaolong 《Frontiers of Law in China-Selected Publications from Chinese Universities》 2024年第1期21-41,共21页
As the idea of diversified dispute resolution becomes common sense,the structural relations of different dispute resolution mechanisms have become the focus of practice reforms and theoretical controversies in China.T... As the idea of diversified dispute resolution becomes common sense,the structural relations of different dispute resolution mechanisms have become the focus of practice reforms and theoretical controversies in China.The 60-year development of the"Fengqiao Model"has always focused on the overall design of the dispute resolution system,which provides a foundation and plenty of materials for understanding these structural relationships.Combined with the development of social theory,this paper summarizes a general structural theory of dispute resolution mechanisms based on the"Fengqiao Model."This theory advocates that the structure of dispute resolution mechanisms is the outcome of the integration of state intervention,social self-regulatory,and their interactions with various dispute resolution mechanisms.It can be used to explain the formation and change of the dispute resolution system in China,the structural strain in recent years,the overall plan of structural adjustment since 2012,and the next strategic core of profound adjustment.It also can be used to explain why the"Fengqiao Model"is so persistent and widely applicable,and how the"Fengqiao Model"be converted from a local model to an overall requirement,showing the great meaning of adhering to and developing the"Fengqiao Model'at present. 展开更多
关键词 "Fengqiao Model "diversified dispute resolution structure of dispute resolution mechanisms state intervention and social governance
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部