Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on ex...Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on extent of exothermicity of an experimental nickel-copper sulphide stockpile that was formed at a mining site in Sudbury, Canada. The ore contained pentlandite and chalcopyrite that are accompanied by a large quantity of pyrrhotite. The self-heating characteristics were recorded by temperature sensors placed inside the stockpile. Ambient conditions such as temperature, humidity, and wind velocity were simultaneously recorded. The inner temperature of the stockpile indicated significant fluctuations due to rapid changes, particularly in the outside temperature. The minimum and maximum temperatures recorded in the outside and inside were 5 and 10.5, 44.3 and 32 ℃, respectively. The self-heating capacity of the sulphide ore stockpile observed represents a mild case compared to that experienced by coals. Possible reasons are discussed.展开更多
基金made possible through a visiting postdoctoral fellowship to A.H. Ozdeniz by the Scientific and Technological Research Council of Turkey (TUBITAK)An operating research grant through the Natural Sciences and Engineering Council of Canada (NSERC) is also acknowledged
文摘Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on extent of exothermicity of an experimental nickel-copper sulphide stockpile that was formed at a mining site in Sudbury, Canada. The ore contained pentlandite and chalcopyrite that are accompanied by a large quantity of pyrrhotite. The self-heating characteristics were recorded by temperature sensors placed inside the stockpile. Ambient conditions such as temperature, humidity, and wind velocity were simultaneously recorded. The inner temperature of the stockpile indicated significant fluctuations due to rapid changes, particularly in the outside temperature. The minimum and maximum temperatures recorded in the outside and inside were 5 and 10.5, 44.3 and 32 ℃, respectively. The self-heating capacity of the sulphide ore stockpile observed represents a mild case compared to that experienced by coals. Possible reasons are discussed.