[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six differen...[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.展开更多
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap...[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.展开更多
旨在分析子午岭黑山羊的群体遗传多样性和亲缘关系以及家系结构,为子午岭黑山羊的保护和利用提供依据。本研究通过简化基因组测序(super-genotyping by sequencing,Super-GBS)技术对99只(10公/89母)成年子午岭黑山羊进行全基因组SNP检...旨在分析子午岭黑山羊的群体遗传多样性和亲缘关系以及家系结构,为子午岭黑山羊的保护和利用提供依据。本研究通过简化基因组测序(super-genotyping by sequencing,Super-GBS)技术对99只(10公/89母)成年子午岭黑山羊进行全基因组SNP检测。利用Plink软件计算观测杂合度(Ho)、期望杂合度(He)、多态信息含量(PIC)、核苷酸多样性(Pi)、有效等位基因数(Ne)及次要等位基因频率(MAF)等6项遗传多样性指标;GCTA软件进行主成分分析及基因组亲缘关系G矩阵构建;Plink软件构建IBS遗传距离矩阵,R语言绘制热图;PHYLP构建系统发育树;detect RUNS工具检测ROH。结果表明,99只子午岭黑山羊个体共检测到996042个SNPs。子午岭黑山羊群体的PIC、Pi、Ne及MAF值分别是0.161、0.193、1.295、0.130,且Ho(0.167)低于He(0.192),说明子午岭黑山羊群体遗传多样性较低。G矩阵和IBS遗传距离结果均表明子午岭黑山羊群体间大部分个体间亲缘关系较远。主成分分析结果揭示子午岭黑山羊群体内部不存在明显分化,系统发育树结果说明子午岭黑山羊群体公羊可大致分为6个家系,所有家系公羊数量较少。子午岭黑山羊群体的近交系数FROH为0.0496,说明子午岭黑山羊群体内部近交程度相对较低。综上所述,子午岭黑山羊群体遗传多样性较低,大部分个体间亲缘关系较远,群体内近交程度较低,后期应注意后代的选育,避免血统流失。展开更多
Based on the 60 mm artillery grenade,a slow-release structure was designed to reduce the severity of ammunitions response to accidental thermal stimulation and improve the thermal stability of ammunitions.The slow-rel...Based on the 60 mm artillery grenade,a slow-release structure was designed to reduce the severity of ammunitions response to accidental thermal stimulation and improve the thermal stability of ammunitions.The slow-release structure was made of high-density polyethylene(HDPE) and connected the fuse and the projectile body through internal and external threads.To study the safety of the slowrelease structure under artillery launching overload,mechanical analysis of the slow-release structure was simulated via finite element analysis(FEA).The impacts of various factors(e.g.,fuse mass,number of threads,and nominal diameter of internal threads of the slow-release structure) on the connection strength of the slow-release structure were studied.A strength-prediction model based on the fuse mass and internal thread parameters was established by fitting the maximum effective stress of the slowrelease structure.This led to good prediction results.In conclusion,this study provides references and theoretical support for the design of thermal protection structures insensitive to ammunition.展开更多
To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fer...To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fertilizer.However,the optimal amount of SRF and how it would promote lotus rhizome quality remain unclear.This study was designed to investigate the photosynthetic characteristics and the synthesis,accumulation,and physicochemical properties of lotus rhizome starches under six SRF levels(CK,S1,S2,S3,S4,and S5).Compared with CK(0 kg ha^(–1)),the net photosynthetic rate(P_(n))and SPAD values of leaves remained at higher levels under SRF treatment.Further research showed that SRF increased the lotus rhizome yield,the contents of amylose,amylopectin,and total starch,and the number of starch granules.Among the six SRF levels,S3(1035 kg ha^(–1))showed the greatest difference from CK and produced the highest levels.With the increasing SRF levels,the peak,hot and final viscosities decreased at first and then increased,but the setback viscosity and pasting temperature increased.In order to interpret these changes at the molecular level,the activities of key enzymes and relative expression levels of starch accumulation related genes were analyzed.Each of these parameters also increased under SRF treatment,especially under the S3 treatment.The results of this study show that SRF,especially S3(1035 kg ha^(–1)),is a suitable fertilizer option for lotus planting which can improve lotus rhizome quality by affecting starch accumulations related enzymes and genes.These results will be useful for SRF application to high-quality lotus rhizome production with low environmental costs.展开更多
While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is curr...While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm...The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm because of its lesser invasiveness.However,changes in anatomical structures of the body and reconstruction of internal organs or different organs are common after traditional surgery or MIS,decreasing the quality of life of patients post-operation.Thus,I propose a new treatment mode,super MIS(SMIS),which is defined as“curing a disease or lesion which used to be treated by MIS while preserving the integrity of the organs”.In this study,I describe the origin,definition,operative channels,advantages,and future perspectives of SMIS.展开更多
[Objectives]To study the impacts and demonstration effects of long-acting slow-release fertilizer application on economic yield of peanut.[Methods]The 25,30,35,40,45,50 kg of long-acting slow-release fertilizers were ...[Objectives]To study the impacts and demonstration effects of long-acting slow-release fertilizer application on economic yield of peanut.[Methods]The 25,30,35,40,45,50 kg of long-acting slow-release fertilizers were applied to 667 m 2 of peanuts,and different amounts of urea were applied together.[Results]Applying 40 kg of long-acting slow-release fertilizer and 10.45 kg of urea had the best effect.Compared with the application of ordinary compound fertilizers,the plants did not age prematurely,the leaf diseases were mild,the stems and leaves remained dark green when harvested,and the stems and leaves had a longer functional period.Bearing shoots increased by 1.7,single-plant full pods increased by 2.4,double-seed peanuts increased by 3.2,empty pods decreased by 0.5,and single-seed peanuts decreased by 0.7.The experimental demonstration results show that the spring-sowed peanuts had an average yield increase of 29.0-67.2 kg/667 m 2,and the yield increase rate was 7.35%-16.89%,and the difference was extremely significant.[Conclusions]In the high-yield cultivation of peanuts,the application of long-acting slow-release fertilizer can be promoted to improve peanut production.展开更多
Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim...Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.展开更多
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each ...The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes.展开更多
Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbo...Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.展开更多
文摘[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.
基金Supported by National Key Research and Development Program of China(2017FYD0101406)Zhoukou Comprehensive Test Station of Henan Provincial Corn Industry Technology System(HARS-22-02-Z5)。
文摘[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.
文摘旨在分析子午岭黑山羊的群体遗传多样性和亲缘关系以及家系结构,为子午岭黑山羊的保护和利用提供依据。本研究通过简化基因组测序(super-genotyping by sequencing,Super-GBS)技术对99只(10公/89母)成年子午岭黑山羊进行全基因组SNP检测。利用Plink软件计算观测杂合度(Ho)、期望杂合度(He)、多态信息含量(PIC)、核苷酸多样性(Pi)、有效等位基因数(Ne)及次要等位基因频率(MAF)等6项遗传多样性指标;GCTA软件进行主成分分析及基因组亲缘关系G矩阵构建;Plink软件构建IBS遗传距离矩阵,R语言绘制热图;PHYLP构建系统发育树;detect RUNS工具检测ROH。结果表明,99只子午岭黑山羊个体共检测到996042个SNPs。子午岭黑山羊群体的PIC、Pi、Ne及MAF值分别是0.161、0.193、1.295、0.130,且Ho(0.167)低于He(0.192),说明子午岭黑山羊群体遗传多样性较低。G矩阵和IBS遗传距离结果均表明子午岭黑山羊群体间大部分个体间亲缘关系较远。主成分分析结果揭示子午岭黑山羊群体内部不存在明显分化,系统发育树结果说明子午岭黑山羊群体公羊可大致分为6个家系,所有家系公羊数量较少。子午岭黑山羊群体的近交系数FROH为0.0496,说明子午岭黑山羊群体内部近交程度相对较低。综上所述,子午岭黑山羊群体遗传多样性较低,大部分个体间亲缘关系较远,群体内近交程度较低,后期应注意后代的选育,避免血统流失。
文摘Based on the 60 mm artillery grenade,a slow-release structure was designed to reduce the severity of ammunitions response to accidental thermal stimulation and improve the thermal stability of ammunitions.The slow-release structure was made of high-density polyethylene(HDPE) and connected the fuse and the projectile body through internal and external threads.To study the safety of the slowrelease structure under artillery launching overload,mechanical analysis of the slow-release structure was simulated via finite element analysis(FEA).The impacts of various factors(e.g.,fuse mass,number of threads,and nominal diameter of internal threads of the slow-release structure) on the connection strength of the slow-release structure were studied.A strength-prediction model based on the fuse mass and internal thread parameters was established by fitting the maximum effective stress of the slowrelease structure.This led to good prediction results.In conclusion,this study provides references and theoretical support for the design of thermal protection structures insensitive to ammunition.
基金financial support they received from the National Key R&D Program of China(2020YFD1000300)the earmarked fund for China Agriculture Research System(CARS-24)the HighLevel Talent Support Plan(Lv-Yang-Jin-Feng),Yangzhou,China。
文摘To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fertilizer.However,the optimal amount of SRF and how it would promote lotus rhizome quality remain unclear.This study was designed to investigate the photosynthetic characteristics and the synthesis,accumulation,and physicochemical properties of lotus rhizome starches under six SRF levels(CK,S1,S2,S3,S4,and S5).Compared with CK(0 kg ha^(–1)),the net photosynthetic rate(P_(n))and SPAD values of leaves remained at higher levels under SRF treatment.Further research showed that SRF increased the lotus rhizome yield,the contents of amylose,amylopectin,and total starch,and the number of starch granules.Among the six SRF levels,S3(1035 kg ha^(–1))showed the greatest difference from CK and produced the highest levels.With the increasing SRF levels,the peak,hot and final viscosities decreased at first and then increased,but the setback viscosity and pasting temperature increased.In order to interpret these changes at the molecular level,the activities of key enzymes and relative expression levels of starch accumulation related genes were analyzed.Each of these parameters also increased under SRF treatment,especially under the S3 treatment.The results of this study show that SRF,especially S3(1035 kg ha^(–1)),is a suitable fertilizer option for lotus planting which can improve lotus rhizome quality by affecting starch accumulations related enzymes and genes.These results will be useful for SRF application to high-quality lotus rhizome production with low environmental costs.
基金the Ministry of Higher Education,Research and Innovation(MoHERI)Oman for their support of this research through TRC block funding Grant no.:BFP/RGP/EBR/22/378。
文摘While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
基金Supported by National Key R&D Programs of China,No.2022YFC2503600.
文摘The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm because of its lesser invasiveness.However,changes in anatomical structures of the body and reconstruction of internal organs or different organs are common after traditional surgery or MIS,decreasing the quality of life of patients post-operation.Thus,I propose a new treatment mode,super MIS(SMIS),which is defined as“curing a disease or lesion which used to be treated by MIS while preserving the integrity of the organs”.In this study,I describe the origin,definition,operative channels,advantages,and future perspectives of SMIS.
基金Peanut Innovation Team Project of Shandong Modern Agricultural Industrial Technology System(SDAIT-05-022).
文摘[Objectives]To study the impacts and demonstration effects of long-acting slow-release fertilizer application on economic yield of peanut.[Methods]The 25,30,35,40,45,50 kg of long-acting slow-release fertilizers were applied to 667 m 2 of peanuts,and different amounts of urea were applied together.[Results]Applying 40 kg of long-acting slow-release fertilizer and 10.45 kg of urea had the best effect.Compared with the application of ordinary compound fertilizers,the plants did not age prematurely,the leaf diseases were mild,the stems and leaves remained dark green when harvested,and the stems and leaves had a longer functional period.Bearing shoots increased by 1.7,single-plant full pods increased by 2.4,double-seed peanuts increased by 3.2,empty pods decreased by 0.5,and single-seed peanuts decreased by 0.7.The experimental demonstration results show that the spring-sowed peanuts had an average yield increase of 29.0-67.2 kg/667 m 2,and the yield increase rate was 7.35%-16.89%,and the difference was extremely significant.[Conclusions]In the high-yield cultivation of peanuts,the application of long-acting slow-release fertilizer can be promoted to improve peanut production.
基金financially supported by the National Key R&D Program of China(2022YFA1503003)the National Natural Science Foundation of China(91961111,22271081)+3 种基金the Natural Science Foundation of Heilongjiang Province(ZD2021B003)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020004)The Basic Research Fund of Heilongjiang University in Heilongjiang Province(2021-KYYWF-0039)the Heilongjiang University Excellent Youth Foundation。
文摘Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.
文摘The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes.
基金Supported by the National Natural Science Foundation of China(42072187)PetroChina Science and Technology Special Project(2021ZZ01-05)。
文摘Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.