Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electr...Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts.展开更多
Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn ...Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.展开更多
Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that ...Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that cause structural damage to the ocular surface.OSR encompasses both medical and surgical treatment options.In this review,we discuss the medical and surgical strategies used in OSR.Medical management often aims to treat tear insufficiency,inflammation,and keratinization.Surgical treatments may be employed for a variety of reasons,including failure of medical management.This may include improving the oculo-palpebral structures in order to improve lid positioning and tear film.Additional therapies focus on improving tear production,such as through salivary gland transplantation.In situations where the ocular surface is so severely damaged that there is loss of limbal stem cells,limbal stem cell transplant(LSCT)may be indicated.Other surgeries such as amniotic membrane transplant(AMT)and conjunctival flaps(CFs)can help promote corneal healing.Finally,in severe situations where the cornea is beyond salvage,corneal transplantation,such as a penetrating keratoplasty(PKP),can be considered.OSR often requires a combination of medical and surgical approaches targeted to each specific patient’s presentation in order to achieve optimal outcomes.展开更多
Rational reconstruction of oxygen evolution reaction(OER)precatalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis.Herein,we develop a double-cation etching...Rational reconstruction of oxygen evolution reaction(OER)precatalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis.Herein,we develop a double-cation etching strategy to tailor the electronic structure of NiMoO_(4),where the prepared NiMoO_(4) nanorods etched by H_(2)O_(2) reconstruct their surface with abundant cation deficiencies and lattice distortion.Calculation results reveal that the double cation deficiencies can make the upshift of d-band center for Ni atoms and the active sites with better oxygen adsorption capacity.As a result,the optimized sample(NMO-30M)possesses an overpotential of 260 mV at 10 mA cm−2 and excellent long-term durability of 162 h.Importantly,in situ Raman test reveals the rapid formation of high-oxidation-state transition metal hydroxide species,which can further help to improve the catalytic activity of NiMoO_(4) in OER.This work highlights the influence of surface remodification and shed some light on activating catalysts.展开更多
Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) throu...Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) through a mild sulfuration and/or selenylation process of Ni(OH)_(2) supported on carbon cloth(CC).Through careful in-situ Raman spectroscopy and ex-situ X-ray photoelectron spectroscopy,surface reconstruction of NiS_(2),NiSe_(2),and Se-NiS_(2) during the OER process has been revealed.A potentialdependent study shows that Se-NiS_(2) undergoes surface evolution at lower potentials and requires the lowest potential for conversion to NiOOH as a highly OER-active species,accompanied by the leaching of SO_(4)^(2-) and SeO_(4)^(2-) that can again be adsorbed on the catalyst surface to enhance the catalytic activity.Density functional theory(DFT) calculations confirm that Se-NiS_(2) is more susceptible to surface oxidation through the OER process.Therefore,Se-NiS_(2) exhibits outstanding OER activity and stability in alkaline conditions,requiring an overpotential of 343 mV at a current density of 50 mA cm^(-2).A novel insight is provided by our work in understanding the surface reconstruction and electrocatalytic mechanism of Ni-based chalcogenides.展开更多
Nickel-rich transition-metal oxides are widely regarded as promising cathode materials for high-energydensity lithium-ion batteries for emerging electric vehicles. However, achieving high energy density in Ni-rich cat...Nickel-rich transition-metal oxides are widely regarded as promising cathode materials for high-energydensity lithium-ion batteries for emerging electric vehicles. However, achieving high energy density in Ni-rich cathodes is accompanied by substantial safety and cycle-life obstacles. The major issues of Ni-rich cathodes at high working potentials are originated from the unstable cathode-electrolyte interface, while the underlying mechanism of parasitic reactions towards surface reconstructions of cathode materials is not well understood. In this work, we controlled the Li_(2)CO_(3) impurity content on LiNi_(0.83)Mn_(0.1)Co_(0.07)O_(2) cathodes using air, tank-air, and O_(2) synthesis environments. Home-built high-precision leakage current and on-line electrochemical mass spectroscopy experiments verify that Li_(2)CO_(3) impurity is a significant promoter of parasitic reactions on Ni-rich cathodes. The rate of parasitic reactions is strongly correlated to Li_(2)CO_(3) content and severe performance deterioration of Ni83 cathodes.The post-mortem characterizations via high-resolution transition electron microscope and X-ray photoelectron spectroscopy depth profiles reveal that parasitic reactions promote more Ni reduction and O deficiency and even rock-salt phase transformation at the surface of cathode materials. Our observation suggests that surface reconstructions have a strong affiliation to parasitic reactions that create chemically acidic environment to etch away the lattice oxygen and offer the electrical charge to reduce the valence state of transition metal. Thus, this study advances our understanding on surface reconstructions of Nirich cathodes and prepares us for searching for rational strategies.展开更多
A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman'...A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman' s code. Symbolic string matching technique is applied to establish a correspondence between the two consecutive contours. The surface is composed of the pieces reconstructed from the correspondence points. Experimental results show that the proposed method exhibits a good behavior for the quality of surface reconstruction and its time complexity is proportional to mn where m and n are the numbers of vertices of the two consecutive slices, respectively.展开更多
In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calcula...In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(lll) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and -√7× √3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results.展开更多
Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electro...Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electronic board and begin to create actual presentationof real-world objects. VBA is not only a very powerful tool of development, but with very simplesyntax. Associating with those solids, objects and commands of AutoCAD 2000, VBA notably simplifiesprevious complex algorithms, graphical presentations and processing, etc. Meanwhile, it can avoidappearance of complex data structure and data format in reverse design with other modeling software.Applying VBA to reverse engineering can greatly improve modeling efficiency and facilitate surfacereconstruction.展开更多
The fatigue performance of a workpiece depends on its surface quality.In traditional fatigue life prediction,the effect of surface quality is commonly accounted for by using empirical correction factors,which is impre...The fatigue performance of a workpiece depends on its surface quality.In traditional fatigue life prediction,the effect of surface quality is commonly accounted for by using empirical correction factors,which is imprecise when safety is of great concern.For surface quality,the surface topography is an important parameter,which introduces stress concentration that reduces the fatigue life.It is not feasible to test the stress concentration of different surface topographies.On the one hand,it is time-consuming and high-cost,and on the other hand,it cannot reflect the general statistical characteristics.With the help of surface reconstruction technology and interpolation method,a more efficient and economic approach is proposed,where FE simulation of workpiece with the reconstructed surface topography is used as a foundation for fatigue life prediction.The relationship between surface roughness(Sa)and fatigue life of the workpiece is studied with the proposed approach.展开更多
A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction ma...A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction mainly depends on the decoding of gray code views and phase-shift views.In order to find the boundary accurately,gray code patterns and their inverses are projected onto a human eye plaster model.The period dislocation between the gray code views and the phase-shift views in the course of decoding has been analyzed and a new method has been proposed to solve it.The splicing method is based on feature points.The result of the 3D surface reconstruction shows the accuracy and reliability of our method.展开更多
We use Radial Basis Functions (RBFs) to reconstruct smooth surfaces from 3D scattered data. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. We propose improveme...We use Radial Basis Functions (RBFs) to reconstruct smooth surfaces from 3D scattered data. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. We propose improvements on the methods of surface reconstruction with radial basis functions. A sparse approximation set of scattered data is constructed by reducing the number of interpolating points on the surface. We present an adaptive method for finding the off-surface normal points. The order of the equation decreases greatly as the number of the off-surface constraints reduces gradually. Experimental results are provided to illustrate that the proposed method is robust and may draw beautiful graphics.展开更多
High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the...High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π)wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant √2×√2 surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM)measurements.We propose that the commonly observed √2×√2 reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π)band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.展开更多
The problem of computing a piecewise linear approximation to a surface from its sample has been a focus of research in geometry modeling and graphics due to its widespread applications in computer aided design. In thi...The problem of computing a piecewise linear approximation to a surface from its sample has been a focus of research in geometry modeling and graphics due to its widespread applications in computer aided design. In this paper, we give a new algorithm, to be called offset surface filtering (OSF) algorithm, which computes a piecewise-linear approximation of a smooth surface from a finite set of cloud points. The algorithm has two main stages. First, the surface normal on every point is estimated by the least squares best fitting plane method. Second, we construct a restricted Delaunay triangulation, which is a tubular neighborhood of the surface defined by two offset surfaces. The algorithm is simple and robust. We describe an implementation of it and show example outputs.展开更多
The reconstructed structure of Cu (100) surface induced by atomic N adsorption is studied by using scanning tunneling microscopy (STM). The 2D structure of copper boundary between neighbouring N covered islands is...The reconstructed structure of Cu (100) surface induced by atomic N adsorption is studied by using scanning tunneling microscopy (STM). The 2D structure of copper boundary between neighbouring N covered islands is found to be sensitive to the growth conditions, e.g. N+ bombardment time and annealing temperature. The copper boundary experiences a transition from nano-scale stripe to nano-particle when the substrate is continuously annealed at 623~K for a longer time. A well-defined copper-stripe network can be achieved by precisely controlling the growth conditions, which highlights the possibility of producing new templates for nanofabrication.展开更多
Representation of roughness is introduced and the rationality of applying thephysics-based model in RE is analyzed at first. Then the scattering theory of electromagnetic waveis simplified and deduced to a physics-bas...Representation of roughness is introduced and the rationality of applying thephysics-based model in RE is analyzed at first. Then the scattering theory of electromagnetic waveis simplified and deduced to a physics-based model according to the characteristics of the surfaceto be reconstructed in RE. At last, the intensity diagrams of reflected field distribution areprovided to prove the feasibility of the presented model and some spheres are rendered with thismodel.展开更多
This paper systematically investigates the surface reconstruction processes and patterns on stishovite SiO2, HfO2 and rutile TiO2 (001) by using classical molecular dynamics. It is found that these three surfaces re...This paper systematically investigates the surface reconstruction processes and patterns on stishovite SiO2, HfO2 and rutile TiO2 (001) by using classical molecular dynamics. It is found that these three surfaces relax instead of reconstruction at 0 K, and have little possibility to reconstruct below 40 K. Above 40 K, surface reconstructions take place as collective atomic motion which can be speeded by higher temperature or compressed strain. Several reconstruction patterns with approximate surface energies are found, and electrostatic potentials on them are also provided in comparison with possible microscopic results.展开更多
Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput...Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput. Math., 17 (2002), pp. 135-152) based on tensor product algebraic spline surfaces from fixed meshes to adaptive meshes. We start with a tensor product algebraic B-spline surface defined on an initial mesh to fit the given data based on an optimization approach. By measuring the fitting errors over each cell of the mesh, we recursively insert new knots in cells over which the errors are larger than some given threshold, and construct a new algebraic spline surface to better fit the given data locally. The algorithm terminates when the error over each cell is less than the threshold. We provide some examples to demonstrate our algorithm and compare it with Juttler's method. Examples suggest that our method is effective and is able to produce reconstruction surfaces of high quality.展开更多
As a four-electron transfer reaction,oxygen evolution reaction(OER)is limited by large overpotential and slow kinetics.Here,we in-situ synthesized two-dimensional(2D)Ni-Fe metal-organic framework nanosheets on nickel ...As a four-electron transfer reaction,oxygen evolution reaction(OER)is limited by large overpotential and slow kinetics.Here,we in-situ synthesized two-dimensional(2D)Ni-Fe metal-organic framework nanosheets on nickel foam(NixFe-TPA/NF,TPA=terephthalic acid)for oxygen evolution in alkaline and alkaline seawater electrolytes.In 1 M KOH,Ni3Fe-TPA/NF shows a low overpotential(η10)of 189 mV at 10 mA·cm^(-2) and an ultra-low overpotential of only 260 mV at 500 mA·cm^(-2).In alkaline seawater,Ni3Fe-TPA/NF still provides impressive OER performance,with anη10 of 265 mV.In-situ Raman characterization results show that the phase transition occurs during the OER,and Ni3FeOOH with more oxygen vacancies is in-situ formed,reducing the OER energy barrier.Density functional theory(DFT)reveals that the synergy between Ni and Fe reduces the energy barrier and accelerates the rate-determining step.In addition,the ultra-thin 2D sheet structure and the close combination of Ni3FeOOH and highly conductive NF support ensure the high catalytic OER activity.Therefore,the surface reconstruction and structural modification strategy can be used to design and prepare high-performance OER electrocatalysts for energy-related applications.展开更多
Palladium-based alloy catalysts have been employed as one of the potential candidates for oxygen reduc-tion reaction(ORR),but the dissolution of transition metal hinders their application.Herein,structure or-dered PdT...Palladium-based alloy catalysts have been employed as one of the potential candidates for oxygen reduc-tion reaction(ORR),but the dissolution of transition metal hinders their application.Herein,structure or-dered PdTe intermetallic with Pd shell(o-PdTe@Pd)are synthesized via an electrochemical etching driven surface reconstruction strategy.The surface reconstruction could tune the electronic structure,weaken the adsorption energy of reaction intermediates on o-PdTe@Pd,resulting in enhanced electrocatalytic ac-tivity for ORR.The mass activity of o-PdTe@Pd is about 3.3 and 2.7 times higher than that of Pd/C in acid and alkaline,respectively.Besides,the half-potentials for ORR decay only about 44 mV and 12 mV after 30 k cycles accelerated durability test in acid and alkaline media,respectively.The enhanced dura-bility originates from the resistance of Te atoms dissolve in the ordered PdTe intermetallic core and the core-shell structure.When assembled in a Zn-air battery,o-PdTe@Pd electrode delivers a higher specific capacity(794 mAh/g)and better cycling stability than Pt/C.展开更多
基金supported by the financial support of the Guangxi Science and Technology Major Projects(Guike AA23023033)。
文摘Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts.
基金supported by the National Key Research and Development Program of China(2022YFE0206300)the National Natural Science Foundation of China(22209047,U21A2081,22075074)+2 种基金Natural Science Foundation of Hunan Province(2020JJ5035)Hunan Provincial Department of Education Outstanding Youth Project(23B0037)Macao Science and Technology Development Fund(Macao SAR,FDCT-0096/2020/A2).
文摘Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.
文摘Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that cause structural damage to the ocular surface.OSR encompasses both medical and surgical treatment options.In this review,we discuss the medical and surgical strategies used in OSR.Medical management often aims to treat tear insufficiency,inflammation,and keratinization.Surgical treatments may be employed for a variety of reasons,including failure of medical management.This may include improving the oculo-palpebral structures in order to improve lid positioning and tear film.Additional therapies focus on improving tear production,such as through salivary gland transplantation.In situations where the ocular surface is so severely damaged that there is loss of limbal stem cells,limbal stem cell transplant(LSCT)may be indicated.Other surgeries such as amniotic membrane transplant(AMT)and conjunctival flaps(CFs)can help promote corneal healing.Finally,in severe situations where the cornea is beyond salvage,corneal transplantation,such as a penetrating keratoplasty(PKP),can be considered.OSR often requires a combination of medical and surgical approaches targeted to each specific patient’s presentation in order to achieve optimal outcomes.
基金supported by the National Natural Science Foundation of China(No.12004146)Natural Science Foundation of Gansu Province,China(Nos.20JR5RA303 and 20JR10RA648)the Fundamental Research Funds for the Central Universities(No.LZUMMM2022007).
文摘Rational reconstruction of oxygen evolution reaction(OER)precatalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis.Herein,we develop a double-cation etching strategy to tailor the electronic structure of NiMoO_(4),where the prepared NiMoO_(4) nanorods etched by H_(2)O_(2) reconstruct their surface with abundant cation deficiencies and lattice distortion.Calculation results reveal that the double cation deficiencies can make the upshift of d-band center for Ni atoms and the active sites with better oxygen adsorption capacity.As a result,the optimized sample(NMO-30M)possesses an overpotential of 260 mV at 10 mA cm−2 and excellent long-term durability of 162 h.Importantly,in situ Raman test reveals the rapid formation of high-oxidation-state transition metal hydroxide species,which can further help to improve the catalytic activity of NiMoO_(4) in OER.This work highlights the influence of surface remodification and shed some light on activating catalysts.
基金supported by the financial support from the National Natural Science Foundation of China (21871065, 22071038, 22209129)the Heilongjiang Touyan Team (HITTY20190033)the Interdisciplinary Research Foundation of HIT (IR2021205)。
文摘Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) through a mild sulfuration and/or selenylation process of Ni(OH)_(2) supported on carbon cloth(CC).Through careful in-situ Raman spectroscopy and ex-situ X-ray photoelectron spectroscopy,surface reconstruction of NiS_(2),NiSe_(2),and Se-NiS_(2) during the OER process has been revealed.A potentialdependent study shows that Se-NiS_(2) undergoes surface evolution at lower potentials and requires the lowest potential for conversion to NiOOH as a highly OER-active species,accompanied by the leaching of SO_(4)^(2-) and SeO_(4)^(2-) that can again be adsorbed on the catalyst surface to enhance the catalytic activity.Density functional theory(DFT) calculations confirm that Se-NiS_(2) is more susceptible to surface oxidation through the OER process.Therefore,Se-NiS_(2) exhibits outstanding OER activity and stability in alkaline conditions,requiring an overpotential of 343 mV at a current density of 50 mA cm^(-2).A novel insight is provided by our work in understanding the surface reconstruction and electrocatalytic mechanism of Ni-based chalcogenides.
基金supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Officesupported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under Contract No. DE-SC0012704+1 种基金supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357supported by the Vehicle Technologies Office of the U.S. Department of Energy。
文摘Nickel-rich transition-metal oxides are widely regarded as promising cathode materials for high-energydensity lithium-ion batteries for emerging electric vehicles. However, achieving high energy density in Ni-rich cathodes is accompanied by substantial safety and cycle-life obstacles. The major issues of Ni-rich cathodes at high working potentials are originated from the unstable cathode-electrolyte interface, while the underlying mechanism of parasitic reactions towards surface reconstructions of cathode materials is not well understood. In this work, we controlled the Li_(2)CO_(3) impurity content on LiNi_(0.83)Mn_(0.1)Co_(0.07)O_(2) cathodes using air, tank-air, and O_(2) synthesis environments. Home-built high-precision leakage current and on-line electrochemical mass spectroscopy experiments verify that Li_(2)CO_(3) impurity is a significant promoter of parasitic reactions on Ni-rich cathodes. The rate of parasitic reactions is strongly correlated to Li_(2)CO_(3) content and severe performance deterioration of Ni83 cathodes.The post-mortem characterizations via high-resolution transition electron microscope and X-ray photoelectron spectroscopy depth profiles reveal that parasitic reactions promote more Ni reduction and O deficiency and even rock-salt phase transformation at the surface of cathode materials. Our observation suggests that surface reconstructions have a strong affiliation to parasitic reactions that create chemically acidic environment to etch away the lattice oxygen and offer the electrical charge to reduce the valence state of transition metal. Thus, this study advances our understanding on surface reconstructions of Nirich cathodes and prepares us for searching for rational strategies.
文摘A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman' s code. Symbolic string matching technique is applied to establish a correspondence between the two consecutive contours. The surface is composed of the pieces reconstructed from the correspondence points. Experimental results show that the proposed method exhibits a good behavior for the quality of surface reconstruction and its time complexity is proportional to mn where m and n are the numbers of vertices of the two consecutive slices, respectively.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20603032, No.20733004, No.21121003, No.91021004, No.20933006), the National Key Basic Research Program (No.2011CB921400), the Foundation of National Excellent Doctoral Dissertation of China (No.200736), the Fundamental Research Funds for the Central Universities (No.WK2340000006 and No.WK2060140005), and the Shanghai Supercompurer Center, the USTC-HP HPC Project, and the SCCAS.
文摘In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(lll) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and -√7× √3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results.
文摘Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electronic board and begin to create actual presentationof real-world objects. VBA is not only a very powerful tool of development, but with very simplesyntax. Associating with those solids, objects and commands of AutoCAD 2000, VBA notably simplifiesprevious complex algorithms, graphical presentations and processing, etc. Meanwhile, it can avoidappearance of complex data structure and data format in reverse design with other modeling software.Applying VBA to reverse engineering can greatly improve modeling efficiency and facilitate surfacereconstruction.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘The fatigue performance of a workpiece depends on its surface quality.In traditional fatigue life prediction,the effect of surface quality is commonly accounted for by using empirical correction factors,which is imprecise when safety is of great concern.For surface quality,the surface topography is an important parameter,which introduces stress concentration that reduces the fatigue life.It is not feasible to test the stress concentration of different surface topographies.On the one hand,it is time-consuming and high-cost,and on the other hand,it cannot reflect the general statistical characteristics.With the help of surface reconstruction technology and interpolation method,a more efficient and economic approach is proposed,where FE simulation of workpiece with the reconstructed surface topography is used as a foundation for fatigue life prediction.The relationship between surface roughness(Sa)and fatigue life of the workpiece is studied with the proposed approach.
文摘A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction mainly depends on the decoding of gray code views and phase-shift views.In order to find the boundary accurately,gray code patterns and their inverses are projected onto a human eye plaster model.The period dislocation between the gray code views and the phase-shift views in the course of decoding has been analyzed and a new method has been proposed to solve it.The splicing method is based on feature points.The result of the 3D surface reconstruction shows the accuracy and reliability of our method.
文摘We use Radial Basis Functions (RBFs) to reconstruct smooth surfaces from 3D scattered data. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. We propose improvements on the methods of surface reconstruction with radial basis functions. A sparse approximation set of scattered data is constructed by reducing the number of interpolating points on the surface. We present an adaptive method for finding the off-surface normal points. The order of the equation decreases greatly as the number of the off-surface constraints reduces gradually. Experimental results are provided to illustrate that the proposed method is robust and may draw beautiful graphics.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2016YFA0300300,2017YFA0302900,2018YFA0704200 and 2019YFA0308000)the National Natural Science Foundation of China (Grant Nos.11888101,11922414 and11874405)+2 种基金the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB25000000)the Youth Innovation Promotion Association of CAS (Grant No.2017013)the Research Program of Beijing Academy of Quantum Information Sciences (Grant No.Y18G06)。
文摘High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π)wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant √2×√2 surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM)measurements.We propose that the commonly observed √2×√2 reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π)band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.
基金Project supported by the National Natural Science Foundation of China (No. 10371110) and the National Basic Research Program (973) of China (No. 2004CB318000)
文摘The problem of computing a piecewise linear approximation to a surface from its sample has been a focus of research in geometry modeling and graphics due to its widespread applications in computer aided design. In this paper, we give a new algorithm, to be called offset surface filtering (OSF) algorithm, which computes a piecewise-linear approximation of a smooth surface from a finite set of cloud points. The algorithm has two main stages. First, the surface normal on every point is estimated by the least squares best fitting plane method. Second, we construct a restricted Delaunay triangulation, which is a tubular neighborhood of the surface defined by two offset surfaces. The algorithm is simple and robust. We describe an implementation of it and show example outputs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60506019 and 10674118)
文摘The reconstructed structure of Cu (100) surface induced by atomic N adsorption is studied by using scanning tunneling microscopy (STM). The 2D structure of copper boundary between neighbouring N covered islands is found to be sensitive to the growth conditions, e.g. N+ bombardment time and annealing temperature. The copper boundary experiences a transition from nano-scale stripe to nano-particle when the substrate is continuously annealed at 623~K for a longer time. A well-defined copper-stripe network can be achieved by precisely controlling the growth conditions, which highlights the possibility of producing new templates for nanofabrication.
文摘Representation of roughness is introduced and the rationality of applying thephysics-based model in RE is analyzed at first. Then the scattering theory of electromagnetic waveis simplified and deduced to a physics-based model according to the characteristics of the surfaceto be reconstructed in RE. At last, the intensity diagrams of reflected field distribution areprovided to prove the feasibility of the presented model and some spheres are rendered with thismodel.
基金supported by the National Natural Science Foundation of China (Grant No. 10964003)the Natural Science Foundation of Gansu Province (Grant No. 096RJZA102)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (GrantNo. 20096201120002)the China Postdoctoral Science Foundation (Grant No. 20100470886)
文摘This paper systematically investigates the surface reconstruction processes and patterns on stishovite SiO2, HfO2 and rutile TiO2 (001) by using classical molecular dynamics. It is found that these three surfaces relax instead of reconstruction at 0 K, and have little possibility to reconstruct below 40 K. Above 40 K, surface reconstructions take place as collective atomic motion which can be speeded by higher temperature or compressed strain. Several reconstruction patterns with approximate surface energies are found, and electrostatic potentials on them are also provided in comparison with possible microscopic results.
基金supported by the National Key Basic Research Project of China(No.2004CB318000)One Hundred Talent Project of the Chinese Academy of Sciences,the NSF of China(No.60225002,No.60533060)Doctorial Program of MOE of China and the 111 Project(No.B07033).
文摘Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput. Math., 17 (2002), pp. 135-152) based on tensor product algebraic spline surfaces from fixed meshes to adaptive meshes. We start with a tensor product algebraic B-spline surface defined on an initial mesh to fit the given data based on an optimization approach. By measuring the fitting errors over each cell of the mesh, we recursively insert new knots in cells over which the errors are larger than some given threshold, and construct a new algebraic spline surface to better fit the given data locally. The algorithm terminates when the error over each cell is less than the threshold. We provide some examples to demonstrate our algorithm and compare it with Juttler's method. Examples suggest that our method is effective and is able to produce reconstruction surfaces of high quality.
基金supported by the National Natural Science Foundation of China(No.22075099)the Natural Science Foundation of Jilin Province(Nos.20220101051JC and 20200201395JC)the Education Department of Jilin Province(Nos.JJKH20220967KJ and JJKH20220968CY).
文摘As a four-electron transfer reaction,oxygen evolution reaction(OER)is limited by large overpotential and slow kinetics.Here,we in-situ synthesized two-dimensional(2D)Ni-Fe metal-organic framework nanosheets on nickel foam(NixFe-TPA/NF,TPA=terephthalic acid)for oxygen evolution in alkaline and alkaline seawater electrolytes.In 1 M KOH,Ni3Fe-TPA/NF shows a low overpotential(η10)of 189 mV at 10 mA·cm^(-2) and an ultra-low overpotential of only 260 mV at 500 mA·cm^(-2).In alkaline seawater,Ni3Fe-TPA/NF still provides impressive OER performance,with anη10 of 265 mV.In-situ Raman characterization results show that the phase transition occurs during the OER,and Ni3FeOOH with more oxygen vacancies is in-situ formed,reducing the OER energy barrier.Density functional theory(DFT)reveals that the synergy between Ni and Fe reduces the energy barrier and accelerates the rate-determining step.In addition,the ultra-thin 2D sheet structure and the close combination of Ni3FeOOH and highly conductive NF support ensure the high catalytic OER activity.Therefore,the surface reconstruction and structural modification strategy can be used to design and prepare high-performance OER electrocatalysts for energy-related applications.
基金supported by the National Natural Science Foundation(No.22279036)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B21003).
文摘Palladium-based alloy catalysts have been employed as one of the potential candidates for oxygen reduc-tion reaction(ORR),but the dissolution of transition metal hinders their application.Herein,structure or-dered PdTe intermetallic with Pd shell(o-PdTe@Pd)are synthesized via an electrochemical etching driven surface reconstruction strategy.The surface reconstruction could tune the electronic structure,weaken the adsorption energy of reaction intermediates on o-PdTe@Pd,resulting in enhanced electrocatalytic ac-tivity for ORR.The mass activity of o-PdTe@Pd is about 3.3 and 2.7 times higher than that of Pd/C in acid and alkaline,respectively.Besides,the half-potentials for ORR decay only about 44 mV and 12 mV after 30 k cycles accelerated durability test in acid and alkaline media,respectively.The enhanced dura-bility originates from the resistance of Te atoms dissolve in the ordered PdTe intermetallic core and the core-shell structure.When assembled in a Zn-air battery,o-PdTe@Pd electrode delivers a higher specific capacity(794 mAh/g)and better cycling stability than Pt/C.