The Cretaceous(Albian-Cenomanian) Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic e Early Cre...The Cretaceous(Albian-Cenomanian) Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic e Early Cretaceous Gondwanaland fragmentation. The fossil-rich Dalmiapuram Formation,exposed at Ariyalur within the Pondicherry sub-basin of Cauvery Basin, rests in most places directly on the Archean basement and locally on the Lower Cretaceous(Barremian-Aptian) Basal Siliciclastic Formation. In the Dalmiapuram Formation, a facies association of tectonically-disturbed phase is sandwiched between two drastically quieter phases. The early syn-rift facies association(FA 1), records the first carbonate marine transgression within the basin, comprising a bar-lagoon system with occasionally storms affecting along the shore and a sheet-like non-recurrent biomicritic limestone bed on the shallow shelf that laterally grades into pyrite e glauconite-bearing dark-colored shale in the deeper shelf. Spectacular breccias together with varied kinds of mass-flow products comprise the syn-rift facies association(FA 2). While the breccias occur at the basin margin area, the latter extend in the deeper inland sea. Clast composition of the coarse clastics includes large, even block-sized limestone fragments and small fragments of granite and sandstone from the basement.Marl beds of quieter intervals between tectonic pulses occur in alternation with them. Faulted basal contact of the formation, and small grabens filled by multiple mass-flow packages bear the clear signature of the syntectonic activity localized contortions, slump folds, and pillow beds associated with mega slump/slide planes and joints, which corroborates this contention further. This phase of tectonic intervention is followed by another relatively quieter phase and accommodates the late syn-rift facies association(FA 3). A tidal bar-interbar shelf depositional system allowed a transgressive systems tract motif to grow eventually passing upwards into the Karai Shale Formation, whose contact with the Dalmiapuram Formation is gradational.展开更多
The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolu...The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle.展开更多
This study re-evaluates the characteristics of Cu-Pb-Ag and Fe-Mn ore mineralization of the Kombat Mine and Gross Otavi Mine based on field geology, fluid inclusions, petrology, mineralogy, and geochemistry. This is t...This study re-evaluates the characteristics of Cu-Pb-Ag and Fe-Mn ore mineralization of the Kombat Mine and Gross Otavi Mine based on field geology, fluid inclusions, petrology, mineralogy, and geochemistry. This is to determine the genetic relationship between Fe-Mn and Cu-Pb-Ag mineralization. The study has established that the Cu-Pb-Ag ore at the Kombat Mine can be classified as a variant of MVT-type deposit, whereas the Fe-Mn ore can be classified as a stratiform-syn-sedimentary deposit. The formation of the MVT-type deposit is associated with a hydrothermal fluid system with a mean temperature of 183<span style="white-space:nowrap;">°</span>C and mean salinity of 12.85 wt. % NaCl equivalent. The syn-sedimentary Fe-Mn ore, which is largely associated with calc-silicate lithologies, consists mainly of magnetite and hematite with minor pyrite, hausmannite and jacobsite, and was deposited by diagenetic and mixed diagenetic-hydrogenetic processes under changing oxic and anoxic conditions within the sedimentary basin. Acceptable geochemical exploration indicators of the existing mineralization include anomalous values above 0.5% Cu, 0.2% S;0.05% Pb;0.04% As;0.01% Zn;V, W, Mo, and Ag are 0.002%. Mineralogical indicators include chalcopyrite, bornite, covellite and galena with minor chalcocite, sphalerite, and tennantite for the Cu-Pb MVT-type ores at Kombat Mine.展开更多
The Late Cambrian(Furongian)Chaomidian Formation accumulated in an epeiric sea that covered a large part of the North China Plate and extended from China to Korea.The depositional environment of the formation is commo...The Late Cambrian(Furongian)Chaomidian Formation accumulated in an epeiric sea that covered a large part of the North China Plate and extended from China to Korea.The depositional environment of the formation is commonly considered to have been affected by storms that broke up numerous limestone layers,but that was tectonically quiet.It is here argued,however,that some features of the formation-more in particular the many dozens of breccia layers and the occurrence of slid-down limestone blocks that are embedded in autochthonous oolites-can be explained satisfactorily only if some significant fault activity took place during its accumulation.The faulting may have been due to differential loading and subsidence,but an endogenic origin seems more probable.This implies that the structural history of the study area in Shandong Province may need re-consideration.展开更多
文摘The Cretaceous(Albian-Cenomanian) Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic e Early Cretaceous Gondwanaland fragmentation. The fossil-rich Dalmiapuram Formation,exposed at Ariyalur within the Pondicherry sub-basin of Cauvery Basin, rests in most places directly on the Archean basement and locally on the Lower Cretaceous(Barremian-Aptian) Basal Siliciclastic Formation. In the Dalmiapuram Formation, a facies association of tectonically-disturbed phase is sandwiched between two drastically quieter phases. The early syn-rift facies association(FA 1), records the first carbonate marine transgression within the basin, comprising a bar-lagoon system with occasionally storms affecting along the shore and a sheet-like non-recurrent biomicritic limestone bed on the shallow shelf that laterally grades into pyrite e glauconite-bearing dark-colored shale in the deeper shelf. Spectacular breccias together with varied kinds of mass-flow products comprise the syn-rift facies association(FA 2). While the breccias occur at the basin margin area, the latter extend in the deeper inland sea. Clast composition of the coarse clastics includes large, even block-sized limestone fragments and small fragments of granite and sandstone from the basement.Marl beds of quieter intervals between tectonic pulses occur in alternation with them. Faulted basal contact of the formation, and small grabens filled by multiple mass-flow packages bear the clear signature of the syntectonic activity localized contortions, slump folds, and pillow beds associated with mega slump/slide planes and joints, which corroborates this contention further. This phase of tectonic intervention is followed by another relatively quieter phase and accommodates the late syn-rift facies association(FA 3). A tidal bar-interbar shelf depositional system allowed a transgressive systems tract motif to grow eventually passing upwards into the Karai Shale Formation, whose contact with the Dalmiapuram Formation is gradational.
基金This paper was sponsored by the National Natural Science Foundation of China(grant No.40272049)Doctor Research Foundation of China University of Petroleum(Project No.Y020109).
文摘The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle.
文摘This study re-evaluates the characteristics of Cu-Pb-Ag and Fe-Mn ore mineralization of the Kombat Mine and Gross Otavi Mine based on field geology, fluid inclusions, petrology, mineralogy, and geochemistry. This is to determine the genetic relationship between Fe-Mn and Cu-Pb-Ag mineralization. The study has established that the Cu-Pb-Ag ore at the Kombat Mine can be classified as a variant of MVT-type deposit, whereas the Fe-Mn ore can be classified as a stratiform-syn-sedimentary deposit. The formation of the MVT-type deposit is associated with a hydrothermal fluid system with a mean temperature of 183<span style="white-space:nowrap;">°</span>C and mean salinity of 12.85 wt. % NaCl equivalent. The syn-sedimentary Fe-Mn ore, which is largely associated with calc-silicate lithologies, consists mainly of magnetite and hematite with minor pyrite, hausmannite and jacobsite, and was deposited by diagenetic and mixed diagenetic-hydrogenetic processes under changing oxic and anoxic conditions within the sedimentary basin. Acceptable geochemical exploration indicators of the existing mineralization include anomalous values above 0.5% Cu, 0.2% S;0.05% Pb;0.04% As;0.01% Zn;V, W, Mo, and Ag are 0.002%. Mineralogical indicators include chalcopyrite, bornite, covellite and galena with minor chalcocite, sphalerite, and tennantite for the Cu-Pb MVT-type ores at Kombat Mine.
基金the China-Association of Southeast Asian Nations(ASEAN)Maritime Cooperation Fund(grant No.12120100500017001)the China National Natural Science Foundation Project(grant No.41672120)the Shandong University of Science and Technology(SDUST)Research Fund(grant No.2015TDJH101)for their financial support。
文摘The Late Cambrian(Furongian)Chaomidian Formation accumulated in an epeiric sea that covered a large part of the North China Plate and extended from China to Korea.The depositional environment of the formation is commonly considered to have been affected by storms that broke up numerous limestone layers,but that was tectonically quiet.It is here argued,however,that some features of the formation-more in particular the many dozens of breccia layers and the occurrence of slid-down limestone blocks that are embedded in autochthonous oolites-can be explained satisfactorily only if some significant fault activity took place during its accumulation.The faulting may have been due to differential loading and subsidence,but an endogenic origin seems more probable.This implies that the structural history of the study area in Shandong Province may need re-consideration.