The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from ...The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from yellow to dark green with increasing the h-BN addition. Fourier-transform infrared (FTIR) results indicate that sp2 hybridization B-N-B and B-N structures generate when the additive content reaches a certain value in the system. The two peaks are located at 745 and 1425cm-1, respectively. Fhrthermore, the FTIR characteristic peak resulting from nitrogen pairs is noticed and it tends to vanish when the h-BN addition reaches 1.1 wt%. Furthermore, Raman peak of the synthesized diamond shifts down to a lower wavenumber with increasing the h-BN ~ddition content in the synthesis system.展开更多
A cordierite was synthesized from calcined bauxite, talcum, and quartz. The properties and microstructure of the cordierite sintered samples were characterized by Archimedes' method, thermal dilatometry, X-ray diffra...A cordierite was synthesized from calcined bauxite, talcum, and quartz. The properties and microstructure of the cordierite sintered samples were characterized by Archimedes' method, thermal dilatometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and so on. The experimental results showed that calcined bauxite could broaden the range of synthesizing temperature from 1300 ℃ to 1420 ℃ and get pure cordierite. The bulk density and linear thermal expansion coefficient of the sample synthesized at 1420 ℃ for 2 h were 1.97 g·cm^-3 and 2.1×10^-6 ℃^-1, respectively. The XRD analysis showed that the major crystalline phase was a-cordierite with almost no glassy matters, the SEM images illustrated a small vent hole and the size were 5 -100 μm, the well-grown hexagonal and granular cordierite grains had the sizes distributed among 0.1-8 ;xm, and providing high mechanical strength and lower linear thermal expansion coefficient.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 51172089the Natural Science Foundation of Guizhou Province Education Department under Grant No KY[2013]183the Natural Science Foundation of Guizhou Province Science and Technology Agency under Grant Nos LH[2015]7232 and LH[2015]7228
文摘The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from yellow to dark green with increasing the h-BN addition. Fourier-transform infrared (FTIR) results indicate that sp2 hybridization B-N-B and B-N structures generate when the additive content reaches a certain value in the system. The two peaks are located at 745 and 1425cm-1, respectively. Fhrthermore, the FTIR characteristic peak resulting from nitrogen pairs is noticed and it tends to vanish when the h-BN addition reaches 1.1 wt%. Furthermore, Raman peak of the synthesized diamond shifts down to a lower wavenumber with increasing the h-BN ~ddition content in the synthesis system.
基金Funded by the National Basic Research Program ("973"Program)(2010CB227105)
文摘A cordierite was synthesized from calcined bauxite, talcum, and quartz. The properties and microstructure of the cordierite sintered samples were characterized by Archimedes' method, thermal dilatometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and so on. The experimental results showed that calcined bauxite could broaden the range of synthesizing temperature from 1300 ℃ to 1420 ℃ and get pure cordierite. The bulk density and linear thermal expansion coefficient of the sample synthesized at 1420 ℃ for 2 h were 1.97 g·cm^-3 and 2.1×10^-6 ℃^-1, respectively. The XRD analysis showed that the major crystalline phase was a-cordierite with almost no glassy matters, the SEM images illustrated a small vent hole and the size were 5 -100 μm, the well-grown hexagonal and granular cordierite grains had the sizes distributed among 0.1-8 ;xm, and providing high mechanical strength and lower linear thermal expansion coefficient.