This paper reports the application of the biomolecular probe sensor based on the tilted fiber Bragg grating (TFBG) surface plasma resonance (SPR) which can recognize the specificity of the specific molecule by dep...This paper reports the application of the biomolecular probe sensor based on the tilted fiber Bragg grating (TFBG) surface plasma resonance (SPR) which can recognize the specificity of the specific molecule by depositing sensitive biological membrane outside the active golden layer. The method of self-assembly was used to make the fixed sensitive biological membrane to achieve the best effect in the experiment. To illustrate the specific recognition of the DNA molecule, the TFBG-SPR biosensor was exposed to complementary DNA solutions with the concentration of 0.1 mmol/L and 0.05 mmol/L, respectively. The resonance wavelength of the TFBG-SPR biosensor increased gradually, indicating that the hybridization with the complementary DNA molecules changed the effective refractive index in the vicinity of the golden layer. Furthermore, the results illustrated the feasibility of the biomolecular probe sensor based on the TFBG surface plasma resonance for detecting the specific molecule.展开更多
Multiple mode resonance shifts in tilted fiber Bragg gratings(TFBGs)are used to simultaneously measure the thickness and the refractive index of TiO_(2) thin films formed by Atomic Layer Deposition(ALD)on optical fibe...Multiple mode resonance shifts in tilted fiber Bragg gratings(TFBGs)are used to simultaneously measure the thickness and the refractive index of TiO_(2) thin films formed by Atomic Layer Deposition(ALD)on optical fibers.This is achieved by comparing the experimental wavelength shifts of 8 TFBG resonances during the deposition process with simulated shifts from a range of thicknesses(T)and values of the real part of the refractive index(n).The minimization of an error function computed for each(n,T)pair then provides a solution for the thickness and refractive index of the deposited film and,a posteriori,to verify the deposition rate throughout the process from the time evolution of the wavelength shift data.Validations of the results were carried out with a conventional ellipsometer on flat witness samples deposited simultaneously with the fiber and with scanning electron measurements on cut pieces of the fiber itself.The final values obtained by the TFBG(n=2.25,final thickness of 185 nm)were both within 4%of the validation measurements.This approach provides a method to measure the formation of nanoscale dielectric coatings on fibers in situ for applications that require precise thicknesses and refractive indices,such as the optical fiber sensor field.Furthermore,the TFBG can also be used as a process monitor for deposition on other substrates for deposition methods that produce uniform coatings on dissimilar shaped substrates,such as ALD.展开更多
In this paper,the mode coupling mechanism of tilted fiber Bragg gratings(TFBGs)is briefly introduced at first.And a general review on the fabrication,theoretical and experimental research development of TFBGs is prese...In this paper,the mode coupling mechanism of tilted fiber Bragg gratings(TFBGs)is briefly introduced at first.And a general review on the fabrication,theoretical and experimental research development of TFBGs is presented from a worldwide perspective,followed by an introduction of our current research work on TFBGs at the Institute of Modern Optics,Nankai University(IMONK),including TFBG sensors for single-parameter measurements,temperature cross sensitivity of TFBG sensors,and TFBG-based interrogation technique.Finally,we would make a summary of the related key techniques and a remark on prospects of the research and applications of TFBGs.展开更多
A method for detecting protein molecules based on the tilted fiber Bragg grating (TFBG) surface plasma resonance (SPR) is proposed to achieve the quick online real-time detection of trace amount of proteins. The d...A method for detecting protein molecules based on the tilted fiber Bragg grating (TFBG) surface plasma resonance (SPR) is proposed to achieve the quick online real-time detection of trace amount of proteins. The detection principles of the TFBG-SPR protein molecular probe are analyzed, and its feasibility is demonstrated. The intermediary material between the protein molecules and the golden layer outside of the fiber gratings is cysteamine hydrochloride. When the concentration of the cysteamine hydrochloride solution is 2 M, the shift of the TFBG resonance peak is 2.23 nm, illustrating that the cysteamine hydrochloride modifies the gold film successfully. IgG antigen solution is poured on the surface of the cysteamine hydrochloride modifying the gold-deposited TFBG. Finally, antigen-antibody hybridization experiment is carried out with a 10mg/mL antibody solution, and after two hours of hybridization the resonance peak of the TFBG shifts 5.1 nm, which validates the feasibility and effectiveness of the TFBG-SPR protein molecular probe.展开更多
Tilted fiber Bragg grating (TFBG) and reflective tilted fiber Bragg grating (R-TFBG) were proposed and demonstrated in the graded-index multimode fiber (GI-MMF). The TFBGs with grating planes tilted at an angle ...Tilted fiber Bragg grating (TFBG) and reflective tilted fiber Bragg grating (R-TFBG) were proposed and demonstrated in the graded-index multimode fiber (GI-MMF). The TFBGs with grating planes tilted at an angle of 2.5° corresponding to the fiber axis were inscribed. The TFBGs in the GI-MMF had the good linear sensitivity to the temperature, strain and curvature. The fiber was then cleaved at the far end of the TFBG to form an R-TFBG using the Fresnel reflection of the fiber end. The reflective spectra of the R-TFBG were given, and the temperature sensing properties were also investigated.展开更多
文摘This paper reports the application of the biomolecular probe sensor based on the tilted fiber Bragg grating (TFBG) surface plasma resonance (SPR) which can recognize the specificity of the specific molecule by depositing sensitive biological membrane outside the active golden layer. The method of self-assembly was used to make the fixed sensitive biological membrane to achieve the best effect in the experiment. To illustrate the specific recognition of the DNA molecule, the TFBG-SPR biosensor was exposed to complementary DNA solutions with the concentration of 0.1 mmol/L and 0.05 mmol/L, respectively. The resonance wavelength of the TFBG-SPR biosensor increased gradually, indicating that the hybridization with the complementary DNA molecules changed the effective refractive index in the vicinity of the golden layer. Furthermore, the results illustrated the feasibility of the biomolecular probe sensor based on the TFBG surface plasma resonance for detecting the specific molecule.
基金the Spanish Ministry of Universities the support of this work through 260 FPU18/03087 grant (Formación de Profesorado Universitario)the Spanish Ministry of Science and Innovation 261 PID2019-106231RB-I00 TEC Research projectNSERC under Grant RGPIN-2019-06255.
文摘Multiple mode resonance shifts in tilted fiber Bragg gratings(TFBGs)are used to simultaneously measure the thickness and the refractive index of TiO_(2) thin films formed by Atomic Layer Deposition(ALD)on optical fibers.This is achieved by comparing the experimental wavelength shifts of 8 TFBG resonances during the deposition process with simulated shifts from a range of thicknesses(T)and values of the real part of the refractive index(n).The minimization of an error function computed for each(n,T)pair then provides a solution for the thickness and refractive index of the deposited film and,a posteriori,to verify the deposition rate throughout the process from the time evolution of the wavelength shift data.Validations of the results were carried out with a conventional ellipsometer on flat witness samples deposited simultaneously with the fiber and with scanning electron measurements on cut pieces of the fiber itself.The final values obtained by the TFBG(n=2.25,final thickness of 185 nm)were both within 4%of the validation measurements.This approach provides a method to measure the formation of nanoscale dielectric coatings on fibers in situ for applications that require precise thicknesses and refractive indices,such as the optical fiber sensor field.Furthermore,the TFBG can also be used as a process monitor for deposition on other substrates for deposition methods that produce uniform coatings on dissimilar shaped substrates,such as ALD.
基金This work was jointly supported by the National Key Natural Science Foundation of China under Grant No.60736039the National Natural Science Foundation of China under Grant No.10904075+1 种基金the National Natural Science Foundation of China under Grant No.11004110the Fundamental Research Funds for the Central Universities,the National Key Basic Research and Development Program of China under Grant No.2010CB327605,and the National Natural Science Foundation of China under Grant No.50802044.
文摘In this paper,the mode coupling mechanism of tilted fiber Bragg gratings(TFBGs)is briefly introduced at first.And a general review on the fabrication,theoretical and experimental research development of TFBGs is presented from a worldwide perspective,followed by an introduction of our current research work on TFBGs at the Institute of Modern Optics,Nankai University(IMONK),including TFBG sensors for single-parameter measurements,temperature cross sensitivity of TFBG sensors,and TFBG-based interrogation technique.Finally,we would make a summary of the related key techniques and a remark on prospects of the research and applications of TFBGs.
基金This work was financially supported by the National Nature Science Foundation of China (Nos. 61271073 and 61473175) and was supported by the Fundamental Research Funds of Shandong University (No. 2015JC040).
文摘A method for detecting protein molecules based on the tilted fiber Bragg grating (TFBG) surface plasma resonance (SPR) is proposed to achieve the quick online real-time detection of trace amount of proteins. The detection principles of the TFBG-SPR protein molecular probe are analyzed, and its feasibility is demonstrated. The intermediary material between the protein molecules and the golden layer outside of the fiber gratings is cysteamine hydrochloride. When the concentration of the cysteamine hydrochloride solution is 2 M, the shift of the TFBG resonance peak is 2.23 nm, illustrating that the cysteamine hydrochloride modifies the gold film successfully. IgG antigen solution is poured on the surface of the cysteamine hydrochloride modifying the gold-deposited TFBG. Finally, antigen-antibody hybridization experiment is carried out with a 10mg/mL antibody solution, and after two hours of hybridization the resonance peak of the TFBG shifts 5.1 nm, which validates the feasibility and effectiveness of the TFBG-SPR protein molecular probe.
基金This work is supported by National Natural Science Foundation of China (61107073, 61107072 and 61106045), Fundamental Research Funds for the Central Universities (ZYGX2011J002), Research Fund for the Doctoral Program of Higher Education of China (20110185120020).
文摘Tilted fiber Bragg grating (TFBG) and reflective tilted fiber Bragg grating (R-TFBG) were proposed and demonstrated in the graded-index multimode fiber (GI-MMF). The TFBGs with grating planes tilted at an angle of 2.5° corresponding to the fiber axis were inscribed. The TFBGs in the GI-MMF had the good linear sensitivity to the temperature, strain and curvature. The fiber was then cleaved at the far end of the TFBG to form an R-TFBG using the Fresnel reflection of the fiber end. The reflective spectra of the R-TFBG were given, and the temperature sensing properties were also investigated.