Tacrine(9-amino-1,2,3,4-tetrahydroacridine) was synthesized using isatin as the raw material through isatin 3-oxime and 2-aminobenzonitrile with a yield of 68.1%. Sodium methoxide was used as the catalyst in the therm...Tacrine(9-amino-1,2,3,4-tetrahydroacridine) was synthesized using isatin as the raw material through isatin 3-oxime and 2-aminobenzonitrile with a yield of 68.1%. Sodium methoxide was used as the catalyst in the thermal decomposition of isatin 3-oxime, and tetramethylene sulfone was used as the solvent. The structure of tacrine was determined by IR, 1H NMR, MS and elemental analysis.展开更多
Nickel tartrate precursor particles were synthesized by the liquid phase precipitation method in an ethanol-water-ammonia mixed solution, with tartaric acid and using nickel chlorate as raw materials, with the pH valu...Nickel tartrate precursor particles were synthesized by the liquid phase precipitation method in an ethanol-water-ammonia mixed solution, with tartaric acid and using nickel chlorate as raw materials, with the pH value controlled at 4.0, and the temperature controlled at 50 ℃. Nickel particles with complicated morphology were prepared by the decomposition of nickel taratrate precursor particles at temperatures of 360, 380 and 400 ℃, respectively. The study of infrared spectroscopy (IR) indicated that the product was pure nickel tartrate. The studies of the atomic absorption spectrometry (AAS) and organic elemental analysis (OEA) indicated that the molar ratio of Ni2+ to (C4H4O6)2- is close to 1:1. The studies of the differential scanning calorimeter and thermo-gravimetric analysis (DSC-TG) indicated that the chemical formula Niz(C4H4O6) 2.5H2O was confirmed. The studies of X-ray diffractions (XRD) indicated that the silvery white metal powders were pure Ni, with a face-centered cubic crystal structure. The images of scanning electron microscopy (SEM) showed that the morphology of metal Ni particles was obvious spherical and radiate. The diameter of nickel tartrate particles was about 60 μm, which consisted of many nanolathes; and the diameter of metal Ni particles was about 30 μm, which consisted of many lathes about 0.5 μm in thickness.展开更多
Nickel oxalate micro-spheres with core-shell structure of solid core and radiate shell were synthesized by precipitation method in a mixed water solution, with oxalic acid and nickel acetate as raw materials, through ...Nickel oxalate micro-spheres with core-shell structure of solid core and radiate shell were synthesized by precipitation method in a mixed water solution, with oxalic acid and nickel acetate as raw materials, through dropping ammonium hydroxide to adjust the solution pH value to about 8.0. Nickel microspheres with core-shell structure of solid core and porous shell were prepared by decomposing of nickel oxalate microspheres precursor at about 340 ℃ in argon atmosphere. The analyses of infrared spectroscopy(IR)indicates that the composition of the powders is nickel oxalate. The analyses of atomic absorption spectrometry(AAS) and organic elemental analysis(OEA) indicate that the molar ratio of(C2O4)^2-/Ni^2+ is about 1.02, close to the theoretical value of 1.0. The results of the thermo-gravimetric and differential thermal gravity analyses(TG-DTG) indicate that the molar ratio of(C2O4)^2-/Ni^2+ is about 1.06, also close to the theoretical value of 1.0.The analysis of X-ray diffraction(XRD) indicates that the composition of black powders as-prepared is nickel,which has a face-centered cubic crystal structure with average crystal grain size about 16.87 nm. The images of scanning electron microscopy(SEM) indicate that the morphology of nickel oxalate microspheres is a coreshell structure with solid core and radiate shell. The diameter of nickel oxalate microspheres is about 3 μm, and the shell consists of a large number of thin nanorods. The images of SEM also indicate that the morphology of nickel microspheres is a core-shell structure with solid core and porous shell. The diameter of nickel microspheres is about 2 μm, and the shell consists of a large number of nickel grains, surface holes and through holes. The diameter of nickel grains is about 50-100 nm, and the diameter of holes is about 50-200 nm.展开更多
A new schiff base complex derived from furfural-DL-α-alanine and Dy(NO_3)·6H_2O was synthesized. It was characterized by elemental analysis, infrared spectra, ultraviolet spectra, molar conductivity measurements...A new schiff base complex derived from furfural-DL-α-alanine and Dy(NO_3)·6H_2O was synthesized. It was characterized by elemental analysis, infrared spectra, ultraviolet spectra, molar conductivity measurements and thermogravimetric analysis. The stoichiometry was deduced to be [Dy(C_8H_8NO_3)(H_2O)(NO_3)](H_2O)(NO_3). Its thermal decomposition reaction kinetics was studied by thermogravimetry.展开更多
Using the idea of material design and the design of reaction system and conditions,quasi-one-dimensional nano-materials with ribbon-like structure were successfully prepared.Nickel tartrate nanobelts were prepared by ...Using the idea of material design and the design of reaction system and conditions,quasi-one-dimensional nano-materials with ribbon-like structure were successfully prepared.Nickel tartrate nanobelts were prepared by a sol-precipitation route,using nickel chloride hexahydrate and tartaric acid as raw materials,and using ammonium hydroxide as pH value modifier.Nickel nanobelts with smooth surface were prepared by a thermal-decomposition route at about 355℃for about 30 minutes,in CO_(2) atmosphere,using nickel tartrate nanobelts as precursor.The analyses of atomic absorption spectrometry(AAS),organic elemental analyzer(OEA),infrared spectroscopy(IR)and ultraviolet-visible spectroscopy(UV-Vis)indicate that the products as-prepared is nickel tartrate,which has octahedral configuration of co-ordination of nickel atoms.The images of scanning electron microscopy(SEM)indicate that the morphology of nickel tartrate as-prepared is an obvious belt structure with clear and smooth surface.The images of SEM also indicate that the nickel nanobelts have clear and smooth surface.The nickel nanobelts are about tens of micrometers in length,tens of nanometers in thickness,and 100-200 nanometers in width.展开更多
文摘Tacrine(9-amino-1,2,3,4-tetrahydroacridine) was synthesized using isatin as the raw material through isatin 3-oxime and 2-aminobenzonitrile with a yield of 68.1%. Sodium methoxide was used as the catalyst in the thermal decomposition of isatin 3-oxime, and tetramethylene sulfone was used as the solvent. The structure of tacrine was determined by IR, 1H NMR, MS and elemental analysis.
基金Funded by National Natural Science Fundation of China(No.51002126)Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(No.10zxfk30)
文摘Nickel tartrate precursor particles were synthesized by the liquid phase precipitation method in an ethanol-water-ammonia mixed solution, with tartaric acid and using nickel chlorate as raw materials, with the pH value controlled at 4.0, and the temperature controlled at 50 ℃. Nickel particles with complicated morphology were prepared by the decomposition of nickel taratrate precursor particles at temperatures of 360, 380 and 400 ℃, respectively. The study of infrared spectroscopy (IR) indicated that the product was pure nickel tartrate. The studies of the atomic absorption spectrometry (AAS) and organic elemental analysis (OEA) indicated that the molar ratio of Ni2+ to (C4H4O6)2- is close to 1:1. The studies of the differential scanning calorimeter and thermo-gravimetric analysis (DSC-TG) indicated that the chemical formula Niz(C4H4O6) 2.5H2O was confirmed. The studies of X-ray diffractions (XRD) indicated that the silvery white metal powders were pure Ni, with a face-centered cubic crystal structure. The images of scanning electron microscopy (SEM) showed that the morphology of metal Ni particles was obvious spherical and radiate. The diameter of nickel tartrate particles was about 60 μm, which consisted of many nanolathes; and the diameter of metal Ni particles was about 30 μm, which consisted of many lathes about 0.5 μm in thickness.
基金Funded by the National Natural Science Foundation of China(51002126)the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province(2017CL20)
文摘Nickel oxalate micro-spheres with core-shell structure of solid core and radiate shell were synthesized by precipitation method in a mixed water solution, with oxalic acid and nickel acetate as raw materials, through dropping ammonium hydroxide to adjust the solution pH value to about 8.0. Nickel microspheres with core-shell structure of solid core and porous shell were prepared by decomposing of nickel oxalate microspheres precursor at about 340 ℃ in argon atmosphere. The analyses of infrared spectroscopy(IR)indicates that the composition of the powders is nickel oxalate. The analyses of atomic absorption spectrometry(AAS) and organic elemental analysis(OEA) indicate that the molar ratio of(C2O4)^2-/Ni^2+ is about 1.02, close to the theoretical value of 1.0. The results of the thermo-gravimetric and differential thermal gravity analyses(TG-DTG) indicate that the molar ratio of(C2O4)^2-/Ni^2+ is about 1.06, also close to the theoretical value of 1.0.The analysis of X-ray diffraction(XRD) indicates that the composition of black powders as-prepared is nickel,which has a face-centered cubic crystal structure with average crystal grain size about 16.87 nm. The images of scanning electron microscopy(SEM) indicate that the morphology of nickel oxalate microspheres is a coreshell structure with solid core and radiate shell. The diameter of nickel oxalate microspheres is about 3 μm, and the shell consists of a large number of thin nanorods. The images of SEM also indicate that the morphology of nickel microspheres is a core-shell structure with solid core and porous shell. The diameter of nickel microspheres is about 2 μm, and the shell consists of a large number of nickel grains, surface holes and through holes. The diameter of nickel grains is about 50-100 nm, and the diameter of holes is about 50-200 nm.
文摘A new schiff base complex derived from furfural-DL-α-alanine and Dy(NO_3)·6H_2O was synthesized. It was characterized by elemental analysis, infrared spectra, ultraviolet spectra, molar conductivity measurements and thermogravimetric analysis. The stoichiometry was deduced to be [Dy(C_8H_8NO_3)(H_2O)(NO_3)](H_2O)(NO_3). Its thermal decomposition reaction kinetics was studied by thermogravimetry.
基金Funded by the Doctoral Fund of Chengdu University(2081919131)the Open Fund of Material Corrosion and Protection Key Laboratory of Sichuan Province(2021CL27)。
文摘Using the idea of material design and the design of reaction system and conditions,quasi-one-dimensional nano-materials with ribbon-like structure were successfully prepared.Nickel tartrate nanobelts were prepared by a sol-precipitation route,using nickel chloride hexahydrate and tartaric acid as raw materials,and using ammonium hydroxide as pH value modifier.Nickel nanobelts with smooth surface were prepared by a thermal-decomposition route at about 355℃for about 30 minutes,in CO_(2) atmosphere,using nickel tartrate nanobelts as precursor.The analyses of atomic absorption spectrometry(AAS),organic elemental analyzer(OEA),infrared spectroscopy(IR)and ultraviolet-visible spectroscopy(UV-Vis)indicate that the products as-prepared is nickel tartrate,which has octahedral configuration of co-ordination of nickel atoms.The images of scanning electron microscopy(SEM)indicate that the morphology of nickel tartrate as-prepared is an obvious belt structure with clear and smooth surface.The images of SEM also indicate that the nickel nanobelts have clear and smooth surface.The nickel nanobelts are about tens of micrometers in length,tens of nanometers in thickness,and 100-200 nanometers in width.