BACKGROUND Cancer stem cells(CSCs)are a subpopulation of cancer cells with the potential of self-renewal and differentiation.CSCs play critical roles in tumorigenesis,recurrence,metastasis,radiation tolerance and chem...BACKGROUND Cancer stem cells(CSCs)are a subpopulation of cancer cells with the potential of self-renewal and differentiation.CSCs play critical roles in tumorigenesis,recurrence,metastasis,radiation tolerance and chemoresistance.AIM To assess the expression patterns and clinical potential of doublecortin-like kinase 1(DCLK1)and leucine-rich repeat-containing G-protein-coupled receptor 5(Lgr5),as prognostic CSC markers of colorectal cancer(CRC).METHODS The expression of DCLK1 and Lgr5 in CRC tissue sections from 92 patients was determined by immunohistochemistry.Each case was evaluated using a combined scoring method based on signal intensity staining(scored 0-3)and the proportion of positively stained cancer cells(scored 0-3).The final staining score was calculated as the intensity score multiplied by the proportion score.Low expression of DCLK1 and Lgr5 was defined as a score of 0-3;high expression of DCLK1 and Lgr5 was defined as a score of≥4.Specimens were categorized as either high or low expression,and the correlation between the expression of DCLK1 or Lgr5 and clinicopathological factors was investigated.RESULTS DCLK1 and Lgr5 expression levels were significantly positively correlated.CRC patients with high DCLK1,Lgr5 and DCLK1/Lgr5 expressions had poorer progression-free survival and overall survival.Moreover,high expression of DCLK1 was an independent prognostic factor for recurrence and overall survival in patients with CRC by multivariate analysis(P=0.026 and P=0.049,respectively).CONCLUSION DCLK1 may be a potential CSC marker for the recurrence and survival of CRC patients.展开更多
OBJECTIVE Takeda G protein-coupled receptor 5(TGR5)is recognized as a promising target for type 2 diabetes and metabolic syndrome;its expression has been demonstrat⁃ed in the brain and is thought to be neuroprotec⁃tiv...OBJECTIVE Takeda G protein-coupled receptor 5(TGR5)is recognized as a promising target for type 2 diabetes and metabolic syndrome;its expression has been demonstrat⁃ed in the brain and is thought to be neuroprotec⁃tive.Here,we hypothesize that dysfunction of central TGR5 may contribute to the pathogene⁃sis of depression.METHODS In well-established chronic social defeat stress(CSDS)and chronic restraint stress(CRS)models of depression,we investigated the functional roles of TGR5 in CA3 pyramidal neurons(PyNs)and underlying mech⁃anisms of the neuronal circuit in depression(for in vivo studies,n=10;for in vitro studies,n=5-10)using fiber photometry;optogenetic,chemoge⁃netic,pharmacological,and molecular profiling techniques;and behavioral tests.RESULTS Both CSDS and CRS most significantly reduced TGR5 expression of hippocampal CA3 PyNs.Genetic overexpression of TGR5 in CA3 PyNs or intra-CA3 infusion of INT-777,a specific agonist,protected against CSDS and CRS,exerting sig⁃nificant antidepressant-like effects that were mediated via CA3 PyN activation.Conversely,genetic knockout or TGR5 knockdown in CA3 facilitated stress-induced depression-like behav⁃iors.Re-expression of TGR5 in CA3 PyNs rather than infusion of INT-777 significantly improved depression-like behaviors in Tgr5 knockout mice exposed to CSDS or CRS.Silencing and stimula⁃tion of CA3 PyNs→somatostatin-GABAergic(gamma-aminobutyric acidergic)neurons of the dorsolateral septum circuit bidirectionally regulat⁃ed depression-like behaviors,and blockade of this circuit abrogated the antidepressant-like effects from TGR5 activation of CA3 PyNs.CON⁃CLUSION TGR5 can regulate depression via CA3 PyNs→somatostatin-GABAergic neurons of dorsolateral septum transmission,suggesting that TGR5 could be a novel target for developing antidepressants.展开更多
Background and aims:Diet-induced obesity and metabolic syndrome can trigger the progression of fatty liver disease to non-alcoholic steatohepatitis and fibrosis,which is a major public health concern.Bile acids regula...Background and aims:Diet-induced obesity and metabolic syndrome can trigger the progression of fatty liver disease to non-alcoholic steatohepatitis and fibrosis,which is a major public health concern.Bile acids regulate metabolic homeostasis and inflammation in the liver and gut via the activation of nuclear farnesoid X receptor(Fxr)and the membrane receptor Takeda G protein-coupled receptor 5(Tgr5).Tgr5 is highly expressed in the gut and skeletal muscle,and in cholangiocytes and Kupffer cells of the liver.Tgr5 is implicated in the mediation of liver and gut inflammation,as well as the maintenance of energy homeostasis.Here,we used a high fat,high fructose,and high sucrose(HFS)diet to determine how bile acid signaling through Tgr5 may regulate metabolism during the progression from fatty liver to non-alcoholic steatohepatitis and fibrosis.Materials and methods:Female C57BL/6J control wild type(WT)and Tgr5 knockout(Tgr5^(-/-))mice were fed HFS(high fat(40%kcal),high fructose,and 20%sucrose water)diet for 20 weeks.Metabolic phe-notypes were characterized through examination of bile acid synthesis pathways,lipid and cholesterol metabolism pathways,and fibrosis and inflammation pathways.Results:Tgr5^(-/-)mice were more glucose intolerant when fed HFS diet,despite gaining the same amount of weight as WT mice.Tgr5^(-/-)mice accumulated significantly more hepatic cholesterol and triglycerides on HFS diet compared to WT mice,and gene expression of lipogenic genes was significantly upregulated.Hepatic cholesterol 7alpha-hydroxylase(Cyp7a1)gene expression was consistently elevated in Tgr5^(-/-)mice,while oxysterol 7alpha-hydroxylase(Cyp7b1),sterol 27-hydroxylase(Cyp27a1),Fxr,and small heterodimer partner(Shp)were downregulated by HFS diet.Surprisingly,hepatic inflammation and fibrosis were also significantly reduced in Tgr5^(-/-)mice fed HFS diet,which may be due to altered se-rotonin signaling in the liver.Conclusions:Tgr5^(-/-)mice may be protected from high fat,high sugar-induced hepatic inflammation and injury due to altered serotonin metabolism.展开更多
BACKGROUND Gut microbiota and its metabolites may be involved in the pathogenesis of inflammatory bowel disease.Several clinical studies have recently shown that patients with ulcerative colitis(UC)have altered profil...BACKGROUND Gut microbiota and its metabolites may be involved in the pathogenesis of inflammatory bowel disease.Several clinical studies have recently shown that patients with ulcerative colitis(UC)have altered profiles of fecal bile acids(BAs).It was observed that BA receptors Takeda G-protein-coupled receptor 5(TGR5)and vitamin D receptor(VDR)participate in intestinal inflammatory responses by regulating NF-ĸB signaling.We hypothesized that altered profiles of fecal BAs might be correlated with gut microbiota and inflammatory responses in patients with UC.AIM To investigate the changes in fecal BAs and analyze the relationship of BAs with gut microbiota and inflammation in patients with UC.METHODS The present study used 16S rDNA sequencing technology to detect the differences in the intestinal flora between UC patients and healthy controls(HCs).Fecal BAs were measured by targeted metabolomics approaches.Mucosal TGR5 and VDR expression was analyzed using immunohistochemistry,and serum inflammatory cytokine levels were detected by ELISA.RESULTS Thirty-two UC patients and twenty-three HCs were enrolled in this study.It was found that the diversity of gut microbiota in UC patients was reduced compared with that in HCs.Firmicutes,Clostridium IV,Butyricicoccus,Clostridium XlVa,Faecalibacterium,and Roseburia were significantly decreased in patients with UC(P=3.75E-05,P=8.28E-07,P=0.0002,P=0.003,P=0.0003,and P=0.0004,respectively).Proteobacteria,Escherichia,Enterococcus,Klebsiella,and Streptococcus were significantly enriched in the UC group(P=2.99E-09,P=3.63E-05,P=8.59E-05,P=0.003,and P=0.016,respectively).The concentrations of fecal secondary BAs,such as lithocholic acid,deoxycholic acid,glycodeoxycholic acid,glycolithocholic acid,and taurolithocholate,in UC patients were significantly lower than those in HCs(P=8.1E-08,P=1.2E-07,P=3.5E-04,P=1.9E-03,and P=1.8E-02,respectively)and were positively correlated with Butyricicoccus,Roseburia,Clostridium IV,Faecalibacterium,and Clostridium XlVb(P<0.01).The concentrations of primary BAs,such as taurocholic acid,cholic acid,taurochenodeoxycholate,and glycochenodeoxycholate,in UC patients were significantly higher than those in HCs(P=5.3E-03,P=4E-02,P=0.042,and P=0.045,respectively)and were positively related to Enterococcus,Klebsiella,Streptococcus,Lactobacillus,and pro-inflammatory cytokines(P<0.01).The expression of TGR5 was significantly elevated in UC patients(0.019±0.013 vs 0.006±0.003,P=0.0003).VDR expression in colonic mucosal specimens was significantly decreased in UC patients(0.011±0.007 vs 0.016±0.004,P=0.033).CONCLUSION Fecal BA profiles are closely related to the gut microbiota and serum inflammatory cytokines.Dysregulation of the gut microbiota and altered constitution of fecal BAs may participate in regulating inflammatory responses via the BA receptors TGR5 and VDR.展开更多
Maintaining bile acid homeostasis is essential for metabolic health.Bile acid homeostasis encompasses a complex interplay between biosynthesis,conjugation,secretion,and reabsorption.Beyond their vital role in digestio...Maintaining bile acid homeostasis is essential for metabolic health.Bile acid homeostasis encompasses a complex interplay between biosynthesis,conjugation,secretion,and reabsorption.Beyond their vital role in digestion and absorption of lipid-soluble nutrients,bile acids are pivotal in systemic metabolic regulation.Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases,including obesity,type 2 diabetes melli-tus(T2DM),and metabolic dysfunction-associated steatotic liver disease(MASLD).Bile acids are essential signaling molecules that regulate many critical biological processes,including lipid metabolism,energy expenditure,insulin sensitivity,and glucose metabolism.Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms,hormonal dysregu-lation,interactions with the gut microbiota,and changes in the expression and function of bile acid transporters and receptors.This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity,T2DM,and MASLD.We aim to underscore the significance of bile acids as potential diag-nostic markers and therapeutic agents in the context of metabolic diseases,providing insights into their application in translational medicine.展开更多
基金Supported by Sanming Project of Shenzhen,No.SZSM201612041Shenzhen Science and Technology Innovation Commission Project,No.GJHZ20180420180754917 and No.ZDSYS20190902092855097Postdoctoral Science Foundation of China,No.2018M633095.
文摘BACKGROUND Cancer stem cells(CSCs)are a subpopulation of cancer cells with the potential of self-renewal and differentiation.CSCs play critical roles in tumorigenesis,recurrence,metastasis,radiation tolerance and chemoresistance.AIM To assess the expression patterns and clinical potential of doublecortin-like kinase 1(DCLK1)and leucine-rich repeat-containing G-protein-coupled receptor 5(Lgr5),as prognostic CSC markers of colorectal cancer(CRC).METHODS The expression of DCLK1 and Lgr5 in CRC tissue sections from 92 patients was determined by immunohistochemistry.Each case was evaluated using a combined scoring method based on signal intensity staining(scored 0-3)and the proportion of positively stained cancer cells(scored 0-3).The final staining score was calculated as the intensity score multiplied by the proportion score.Low expression of DCLK1 and Lgr5 was defined as a score of 0-3;high expression of DCLK1 and Lgr5 was defined as a score of≥4.Specimens were categorized as either high or low expression,and the correlation between the expression of DCLK1 or Lgr5 and clinicopathological factors was investigated.RESULTS DCLK1 and Lgr5 expression levels were significantly positively correlated.CRC patients with high DCLK1,Lgr5 and DCLK1/Lgr5 expressions had poorer progression-free survival and overall survival.Moreover,high expression of DCLK1 was an independent prognostic factor for recurrence and overall survival in patients with CRC by multivariate analysis(P=0.026 and P=0.049,respectively).CONCLUSION DCLK1 may be a potential CSC marker for the recurrence and survival of CRC patients.
文摘OBJECTIVE Takeda G protein-coupled receptor 5(TGR5)is recognized as a promising target for type 2 diabetes and metabolic syndrome;its expression has been demonstrat⁃ed in the brain and is thought to be neuroprotec⁃tive.Here,we hypothesize that dysfunction of central TGR5 may contribute to the pathogene⁃sis of depression.METHODS In well-established chronic social defeat stress(CSDS)and chronic restraint stress(CRS)models of depression,we investigated the functional roles of TGR5 in CA3 pyramidal neurons(PyNs)and underlying mech⁃anisms of the neuronal circuit in depression(for in vivo studies,n=10;for in vitro studies,n=5-10)using fiber photometry;optogenetic,chemoge⁃netic,pharmacological,and molecular profiling techniques;and behavioral tests.RESULTS Both CSDS and CRS most significantly reduced TGR5 expression of hippocampal CA3 PyNs.Genetic overexpression of TGR5 in CA3 PyNs or intra-CA3 infusion of INT-777,a specific agonist,protected against CSDS and CRS,exerting sig⁃nificant antidepressant-like effects that were mediated via CA3 PyN activation.Conversely,genetic knockout or TGR5 knockdown in CA3 facilitated stress-induced depression-like behav⁃iors.Re-expression of TGR5 in CA3 PyNs rather than infusion of INT-777 significantly improved depression-like behaviors in Tgr5 knockout mice exposed to CSDS or CRS.Silencing and stimula⁃tion of CA3 PyNs→somatostatin-GABAergic(gamma-aminobutyric acidergic)neurons of the dorsolateral septum circuit bidirectionally regulat⁃ed depression-like behaviors,and blockade of this circuit abrogated the antidepressant-like effects from TGR5 activation of CA3 PyNs.CON⁃CLUSION TGR5 can regulate depression via CA3 PyNs→somatostatin-GABAergic neurons of dorsolateral septum transmission,suggesting that TGR5 could be a novel target for developing antidepressants.
基金This work was supported by the USA National Institutes of Health(NIH)(AA015951,DK044442,and DK058379).
文摘Background and aims:Diet-induced obesity and metabolic syndrome can trigger the progression of fatty liver disease to non-alcoholic steatohepatitis and fibrosis,which is a major public health concern.Bile acids regulate metabolic homeostasis and inflammation in the liver and gut via the activation of nuclear farnesoid X receptor(Fxr)and the membrane receptor Takeda G protein-coupled receptor 5(Tgr5).Tgr5 is highly expressed in the gut and skeletal muscle,and in cholangiocytes and Kupffer cells of the liver.Tgr5 is implicated in the mediation of liver and gut inflammation,as well as the maintenance of energy homeostasis.Here,we used a high fat,high fructose,and high sucrose(HFS)diet to determine how bile acid signaling through Tgr5 may regulate metabolism during the progression from fatty liver to non-alcoholic steatohepatitis and fibrosis.Materials and methods:Female C57BL/6J control wild type(WT)and Tgr5 knockout(Tgr5^(-/-))mice were fed HFS(high fat(40%kcal),high fructose,and 20%sucrose water)diet for 20 weeks.Metabolic phe-notypes were characterized through examination of bile acid synthesis pathways,lipid and cholesterol metabolism pathways,and fibrosis and inflammation pathways.Results:Tgr5^(-/-)mice were more glucose intolerant when fed HFS diet,despite gaining the same amount of weight as WT mice.Tgr5^(-/-)mice accumulated significantly more hepatic cholesterol and triglycerides on HFS diet compared to WT mice,and gene expression of lipogenic genes was significantly upregulated.Hepatic cholesterol 7alpha-hydroxylase(Cyp7a1)gene expression was consistently elevated in Tgr5^(-/-)mice,while oxysterol 7alpha-hydroxylase(Cyp7b1),sterol 27-hydroxylase(Cyp27a1),Fxr,and small heterodimer partner(Shp)were downregulated by HFS diet.Surprisingly,hepatic inflammation and fibrosis were also significantly reduced in Tgr5^(-/-)mice fed HFS diet,which may be due to altered se-rotonin signaling in the liver.Conclusions:Tgr5^(-/-)mice may be protected from high fat,high sugar-induced hepatic inflammation and injury due to altered serotonin metabolism.
基金Supported by National Key Technology Support Program during“12th Five-Year Plan”Period of China,No.2014BAI08B00National Key Research and Development Plan for Precision Medicine Research,No.2017YFC0910002and Leapforward Development Program for Beijing Biopharmaceutical Industry(G20),No.Z171100001717008.
文摘BACKGROUND Gut microbiota and its metabolites may be involved in the pathogenesis of inflammatory bowel disease.Several clinical studies have recently shown that patients with ulcerative colitis(UC)have altered profiles of fecal bile acids(BAs).It was observed that BA receptors Takeda G-protein-coupled receptor 5(TGR5)and vitamin D receptor(VDR)participate in intestinal inflammatory responses by regulating NF-ĸB signaling.We hypothesized that altered profiles of fecal BAs might be correlated with gut microbiota and inflammatory responses in patients with UC.AIM To investigate the changes in fecal BAs and analyze the relationship of BAs with gut microbiota and inflammation in patients with UC.METHODS The present study used 16S rDNA sequencing technology to detect the differences in the intestinal flora between UC patients and healthy controls(HCs).Fecal BAs were measured by targeted metabolomics approaches.Mucosal TGR5 and VDR expression was analyzed using immunohistochemistry,and serum inflammatory cytokine levels were detected by ELISA.RESULTS Thirty-two UC patients and twenty-three HCs were enrolled in this study.It was found that the diversity of gut microbiota in UC patients was reduced compared with that in HCs.Firmicutes,Clostridium IV,Butyricicoccus,Clostridium XlVa,Faecalibacterium,and Roseburia were significantly decreased in patients with UC(P=3.75E-05,P=8.28E-07,P=0.0002,P=0.003,P=0.0003,and P=0.0004,respectively).Proteobacteria,Escherichia,Enterococcus,Klebsiella,and Streptococcus were significantly enriched in the UC group(P=2.99E-09,P=3.63E-05,P=8.59E-05,P=0.003,and P=0.016,respectively).The concentrations of fecal secondary BAs,such as lithocholic acid,deoxycholic acid,glycodeoxycholic acid,glycolithocholic acid,and taurolithocholate,in UC patients were significantly lower than those in HCs(P=8.1E-08,P=1.2E-07,P=3.5E-04,P=1.9E-03,and P=1.8E-02,respectively)and were positively correlated with Butyricicoccus,Roseburia,Clostridium IV,Faecalibacterium,and Clostridium XlVb(P<0.01).The concentrations of primary BAs,such as taurocholic acid,cholic acid,taurochenodeoxycholate,and glycochenodeoxycholate,in UC patients were significantly higher than those in HCs(P=5.3E-03,P=4E-02,P=0.042,and P=0.045,respectively)and were positively related to Enterococcus,Klebsiella,Streptococcus,Lactobacillus,and pro-inflammatory cytokines(P<0.01).The expression of TGR5 was significantly elevated in UC patients(0.019±0.013 vs 0.006±0.003,P=0.0003).VDR expression in colonic mucosal specimens was significantly decreased in UC patients(0.011±0.007 vs 0.016±0.004,P=0.033).CONCLUSION Fecal BA profiles are closely related to the gut microbiota and serum inflammatory cytokines.Dysregulation of the gut microbiota and altered constitution of fecal BAs may participate in regulating inflammatory responses via the BA receptors TGR5 and VDR.
基金supported by VA Merit Award 5I01BX005730NIH 1R01AA030180,2R56DK115377-05A1.
文摘Maintaining bile acid homeostasis is essential for metabolic health.Bile acid homeostasis encompasses a complex interplay between biosynthesis,conjugation,secretion,and reabsorption.Beyond their vital role in digestion and absorption of lipid-soluble nutrients,bile acids are pivotal in systemic metabolic regulation.Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases,including obesity,type 2 diabetes melli-tus(T2DM),and metabolic dysfunction-associated steatotic liver disease(MASLD).Bile acids are essential signaling molecules that regulate many critical biological processes,including lipid metabolism,energy expenditure,insulin sensitivity,and glucose metabolism.Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms,hormonal dysregu-lation,interactions with the gut microbiota,and changes in the expression and function of bile acid transporters and receptors.This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity,T2DM,and MASLD.We aim to underscore the significance of bile acids as potential diag-nostic markers and therapeutic agents in the context of metabolic diseases,providing insights into their application in translational medicine.