In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
Objective: To establish a DNA detection platform based on a tapered optical fiber to detect Leptospira DNA by targeting the leptospiral secY gene.Methods: The biosensor works on the principle of light propagating in t...Objective: To establish a DNA detection platform based on a tapered optical fiber to detect Leptospira DNA by targeting the leptospiral secY gene.Methods: The biosensor works on the principle of light propagating in the special geometry of the optical fiber tapered from a waist diameter of 125 to 12 μm. The fiber surface was functionalized through a cascade of chemical treatments and the immobilization of a DNA capture probe targeting the secY gene. The presence of the target DNA was determined from the wavelength shift in the optical transmission spectrum.Results: The biosensor demonstrated good sensitivity, detecting Leptospira DNA at 0.001 ng/μL, and was selective for Leptospira DNA without cross-reactivity with non-leptospiral microorganisms. The biosensor specifically detected DNA that was specifically amplified through the loop-mediated isothermal amplification approach.Conclusions: These findings warrant the potential of this platform to be developed as a novel alternative approach to diagnose leptospirosis.展开更多
Rolling element bearing is the most common machine element in rotating machinery.An extended life is among the foremost imperative standards in the optimal design of rolling element bearings,which confide on the fatig...Rolling element bearing is the most common machine element in rotating machinery.An extended life is among the foremost imperative standards in the optimal design of rolling element bearings,which confide on the fatigue failure,wear,and thermal conditions of bearings.To fill the gap,in the current work,all three objectives of a tapered roller bearing have been innovatively considered respectively,which are the dynamic capacity,elasto-hydrodynamic lubrication(EHL)minimum film⁃thickness,and maximum bearing temperature.These objective function formulations are presented,associated design variables are identified,and constraints are discussed.To solve complex non⁃linear constrained optimization formulations,a best⁃practice design procedure was investigated using the Artificial Bee Colony(ABC)algorithms.A sensitivity analysis of several geometric design variables was conducted to observe the difference in all three objectives.An excellent enhancement was found in the bearing designs that have been optimized as compared with bearing standards and previously published works.The present study will definitely add to the present experience based design followed in bearing industries to save time and obtain assessment of bearing performance before manufacturing.To verify the improvement,an experimental investigation is worthwhile conducting.展开更多
Compact fifth-generation(5G)low-frequency band filtering antennas(filtennas)with stable directive radiation patterns,improved bandwidth(BW),and gain are designed,fabricated,and tested in this research.The proposed fil...Compact fifth-generation(5G)low-frequency band filtering antennas(filtennas)with stable directive radiation patterns,improved bandwidth(BW),and gain are designed,fabricated,and tested in this research.The proposed filtennas are achieved by combining the predesigned compact 5G(5.975–7.125 GHz)third-order uniform and non-uniform transmission line hairpin bandpass filters(UTL and NTL HPBFs)with the compact ultrawide band Vivaldi tapered slot antenna(UWB VTSA)in one module.The objective of this integration is to enhance the performance of 5.975–7.125GHz filtennas which will be suitable for modern mobile communication applications by exploiting the benefits of UWB VTSA.Based on NTL HPBF,more space is provided to add the direct current(DC)biassing circuits in cognitive radio networks(CRNs)for frequency reconfigurable applications.To overcome the mismatch between HPBFs and VTSA,detailed parametric studies are presented.Computer simulation technology(CST)software is used for the simulation in this study.Good measured S11 appeared to be<−13 and<−10.54 dB at 5.48–7.73 and 5.9–7.98GHz with peak realized gains of 6.37 and 6.27 dBi,for VTSA with UTL and NTL HPBFs,respectively which outperforms the predesigned filters.Validation is carried out by comparing the measured and simulated results.展开更多
The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for cont...The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.展开更多
Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing ...Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing the complex stiffness transfer model to simulate compaction effect and tapered fictitious soil pile model to simulate stress diffusion,the analytical solution for the torsional impedance at tapered pile top is obtained by virtue of Laplace transform technique and impedance transfer method.Based on the present solution,a parametric study is conducted to investigate the rationality of the present solution and the influence of soil and pile properties on the torsional vibration characteristics of tapered pile embedded in layered soil.The results show that,both the compaction effect and stress diffusion effect have significant influence on the torsional vibration characteristics of tapered pile,and these two factors should be considered during the dynamic design of pile foundation.展开更多
We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the ...We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the use of poplar. Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations. In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland. The outputs of the polynomial taper equation were compared with five published equations. Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat. 55–60° N). The mean age of the stands was 21 years (range 14–43), the mean density 984 stems·ha?1 (198–3,493), and the mean diameter at breast height (outside bark) 25 cm (range 12–40). To verify the tested equations, performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed. Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended. The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management. The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked. Due to the statistical complexity of Kozak’s equation, the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.展开更多
A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a ta...A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.展开更多
The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS ...The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.展开更多
High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence ...High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence of the straight section on the spatial mode filtering. When Lrw is 450μm, the devices have the optimized maxi- mum output power and beam quality,and the output power P is 4. 28W. The beam propagation ratio M2 is 3. 79 at 1W.展开更多
Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and...Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%.展开更多
In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that...In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.展开更多
Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeaster...Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeastern China. Two taper equations with crown ratio and stand basal area were derived from the Max and Burkhart’s (1976) taper equation. Three taper equations were evaluated: (1) the original equation, (2) the original equation with crown ratio, and (3) the original equation with basal area. SAS NLIN and SYSNLIN procedures were used to fit taper equations. Fit statistics and cross-validation were used to evaluate the accuracy and precision of these models. Parameter estimates showed that the original equation with inclusion of crown ratio and basal area variables provided significantly different parameter estimates with lower standard errors. Overall fit statistics indicated that the root mean square error (RMSE) for diameter outside and inside bark decreased respectively by 10% and 7% in the original model with crown ratio and by 12% and 7.2% in the original model with basal area. Cross-validation further confirmed that the original equation with inclusion of crown ratio and basal area variables provided more accurate predictions at the lower section (relative heights, 10%) and upper section (relative heights, 50%) for both outside and inside bark diameters.展开更多
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金funded by Universiti Putra Malaysia through the Geran Inisiatif Putra Siswazah (GP-IPS/2019/9678200)。
文摘Objective: To establish a DNA detection platform based on a tapered optical fiber to detect Leptospira DNA by targeting the leptospiral secY gene.Methods: The biosensor works on the principle of light propagating in the special geometry of the optical fiber tapered from a waist diameter of 125 to 12 μm. The fiber surface was functionalized through a cascade of chemical treatments and the immobilization of a DNA capture probe targeting the secY gene. The presence of the target DNA was determined from the wavelength shift in the optical transmission spectrum.Results: The biosensor demonstrated good sensitivity, detecting Leptospira DNA at 0.001 ng/μL, and was selective for Leptospira DNA without cross-reactivity with non-leptospiral microorganisms. The biosensor specifically detected DNA that was specifically amplified through the loop-mediated isothermal amplification approach.Conclusions: These findings warrant the potential of this platform to be developed as a novel alternative approach to diagnose leptospirosis.
文摘Rolling element bearing is the most common machine element in rotating machinery.An extended life is among the foremost imperative standards in the optimal design of rolling element bearings,which confide on the fatigue failure,wear,and thermal conditions of bearings.To fill the gap,in the current work,all three objectives of a tapered roller bearing have been innovatively considered respectively,which are the dynamic capacity,elasto-hydrodynamic lubrication(EHL)minimum film⁃thickness,and maximum bearing temperature.These objective function formulations are presented,associated design variables are identified,and constraints are discussed.To solve complex non⁃linear constrained optimization formulations,a best⁃practice design procedure was investigated using the Artificial Bee Colony(ABC)algorithms.A sensitivity analysis of several geometric design variables was conducted to observe the difference in all three objectives.An excellent enhancement was found in the bearing designs that have been optimized as compared with bearing standards and previously published works.The present study will definitely add to the present experience based design followed in bearing industries to save time and obtain assessment of bearing performance before manufacturing.To verify the improvement,an experimental investigation is worthwhile conducting.
基金This work was supported by the Postdoctoral Fellowship Scheme under the Professional Development Research University from Universiti Teknologi Malaysia(UTM)under Grant 06E07.
文摘Compact fifth-generation(5G)low-frequency band filtering antennas(filtennas)with stable directive radiation patterns,improved bandwidth(BW),and gain are designed,fabricated,and tested in this research.The proposed filtennas are achieved by combining the predesigned compact 5G(5.975–7.125 GHz)third-order uniform and non-uniform transmission line hairpin bandpass filters(UTL and NTL HPBFs)with the compact ultrawide band Vivaldi tapered slot antenna(UWB VTSA)in one module.The objective of this integration is to enhance the performance of 5.975–7.125GHz filtennas which will be suitable for modern mobile communication applications by exploiting the benefits of UWB VTSA.Based on NTL HPBF,more space is provided to add the direct current(DC)biassing circuits in cognitive radio networks(CRNs)for frequency reconfigurable applications.To overcome the mismatch between HPBFs and VTSA,detailed parametric studies are presented.Computer simulation technology(CST)software is used for the simulation in this study.Good measured S11 appeared to be<−13 and<−10.54 dB at 5.48–7.73 and 5.9–7.98GHz with peak realized gains of 6.37 and 6.27 dBi,for VTSA with UTL and NTL HPBFs,respectively which outperforms the predesigned filters.Validation is carried out by comparing the measured and simulated results.
文摘The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.
基金Projects(51578164,51678547,51878634,51878185,41807262)supported by the National Natural Science Foundation of China。
文摘Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing the complex stiffness transfer model to simulate compaction effect and tapered fictitious soil pile model to simulate stress diffusion,the analytical solution for the torsional impedance at tapered pile top is obtained by virtue of Laplace transform technique and impedance transfer method.Based on the present solution,a parametric study is conducted to investigate the rationality of the present solution and the influence of soil and pile properties on the torsional vibration characteristics of tapered pile embedded in layered soil.The results show that,both the compaction effect and stress diffusion effect have significant influence on the torsional vibration characteristics of tapered pile,and these two factors should be considered during the dynamic design of pile foundation.
基金financially supported by Skogssll-skapet foundation
文摘We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the use of poplar. Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations. In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland. The outputs of the polynomial taper equation were compared with five published equations. Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat. 55–60° N). The mean age of the stands was 21 years (range 14–43), the mean density 984 stems·ha?1 (198–3,493), and the mean diameter at breast height (outside bark) 25 cm (range 12–40). To verify the tested equations, performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed. Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended. The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management. The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked. Due to the statistical complexity of Kozak’s equation, the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.
文摘A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.
文摘The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.
文摘High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence of the straight section on the spatial mode filtering. When Lrw is 450μm, the devices have the optimized maxi- mum output power and beam quality,and the output power P is 4. 28W. The beam propagation ratio M2 is 3. 79 at 1W.
文摘Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z264)
文摘In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.
基金This study was supported by the National Natural Science Foundation of China(30972363)Special Fund for For-estry-Scientific Research in the Public Interest(201004026)+2 种基金China Postdoctoral Science Foundation(200902362,20100471014)the Fun-damental Research Funds for the Central Universities(DL10CA06)SRF for ROCS,SEM.
文摘Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeastern China. Two taper equations with crown ratio and stand basal area were derived from the Max and Burkhart’s (1976) taper equation. Three taper equations were evaluated: (1) the original equation, (2) the original equation with crown ratio, and (3) the original equation with basal area. SAS NLIN and SYSNLIN procedures were used to fit taper equations. Fit statistics and cross-validation were used to evaluate the accuracy and precision of these models. Parameter estimates showed that the original equation with inclusion of crown ratio and basal area variables provided significantly different parameter estimates with lower standard errors. Overall fit statistics indicated that the root mean square error (RMSE) for diameter outside and inside bark decreased respectively by 10% and 7% in the original model with crown ratio and by 12% and 7.2% in the original model with basal area. Cross-validation further confirmed that the original equation with inclusion of crown ratio and basal area variables provided more accurate predictions at the lower section (relative heights, 10%) and upper section (relative heights, 50%) for both outside and inside bark diameters.