Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c...Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received ...This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.展开更多
In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the...In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the accumulated errors in inertial measurements.This paper aims to improve the localization and tracking accuracy by involving current information as extra references.We first integrate current measurements and maps with belief propagation and design a distributed current-aided message-passing scheme that theoretically solves the localization and tracking problems.Based on this scheme,we propose particle-based cooperative localization and target tracking algorithms,named CaCL and CaTT,respectively.In AUV localization,CaCL uses the current measurements to correct the predicted and transmitted position information and alleviates the impact of the accumulated errors in inertial measurements.With target tracking,the current maps are applied in CaTT to modify the position prediction of the target which is calculated through historical estimates.The effectiveness and robustness of the proposed methods are validated through various simulations by comparisons with alternative methods under different trajectories and current conditions.展开更多
This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’...This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.展开更多
Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occ...Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios.展开更多
In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two probl...In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrati...The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.展开更多
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble...Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.展开更多
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive...To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.展开更多
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o...A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.展开更多
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to ...For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.展开更多
Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the taskin...Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.展开更多
A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form ...A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.展开更多
Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two tim...Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed.展开更多
For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will br...For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.展开更多
The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The tr...The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error.展开更多
In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unsc...In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unscented particle filter (UPF) by an interaction step at the beginning. The framework (interaction/mixing, filtering, and combination) is similar to that in a standard IMM filter, but an UPF is adopted in each model. Therefore, the filtering performance and degeneracy phenomenon of particles are improved. The filtering method addresses nonlinear and/or non-Gaussian tracking problems. Simulation results show that the method has better tracking performance compared with the standard IMM-type filter and IMM particle filter.展开更多
In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections...In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.展开更多
基金funded by the National Natural Science Foundation of China,grant number 42074176,U1939204。
文摘Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.
基金supported in part by the National Science Foundation of China(61873335,61833011)the Project of Scie nce and Technology Commission of Shanghai Municipality,China(20ZR1420200,21SQBS01600,19510750300,21190780300)。
文摘This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.
基金supported in part by the National Natural Science Foundation of China(62203299,61773264,61922058,61803261,61801295)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2020ZD206,SL2020MS010,SL2020MS015)。
文摘In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the accumulated errors in inertial measurements.This paper aims to improve the localization and tracking accuracy by involving current information as extra references.We first integrate current measurements and maps with belief propagation and design a distributed current-aided message-passing scheme that theoretically solves the localization and tracking problems.Based on this scheme,we propose particle-based cooperative localization and target tracking algorithms,named CaCL and CaTT,respectively.In AUV localization,CaCL uses the current measurements to correct the predicted and transmitted position information and alleviates the impact of the accumulated errors in inertial measurements.With target tracking,the current maps are applied in CaTT to modify the position prediction of the target which is calculated through historical estimates.The effectiveness and robustness of the proposed methods are validated through various simulations by comparisons with alternative methods under different trajectories and current conditions.
基金the National Natural Science Foundation of China(61933010)the Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-QN-0733).
文摘This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.
基金supported in part by the National Natural Science Foundation of China(under Grant Nos.51939001,61976033,U1813203,61803064,and 61751202)Natural Foundation Guidance Plan Project of Liaoning(2019‐ZD‐0151)+2 种基金Science&Technology Innovation Funds of Dalian(under Grant No.2018J11CY022)Fundamental Research Funds for the Central Universities(under Grant No.3132019345)Dalian High‐level Talents Innovation Support Program(Young Sci-ence and Technology Star Project)(under Grant No.2021RQ067).
文摘Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios.
基金supported by the Guangdong Basic and Applied Basic Research Foundation No.2021A1515110958National Natural Science Foundation of China No.62202215+1 种基金SYLU introduced high-level talents scientific research support plan,Chongqing University Innovation Research Group(CXQT21019)Chongqing Talents Project(CQYC201903048)。
文摘In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
基金supported by the Fundamental Research Funds for the Central Universities Project(CDJZR10170010)
文摘The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.
基金The authors would like to acknowledge National Natural Science Foundation of China(Grant No.61573285,No.62003267)Aeronautical Science Foundation of China(Grant No.2017ZC53021)+1 种基金Open Fund of Key Laboratory of Data Link Technology of China Electronics Technology Group Corporation(Grant No.CLDL-20182101)Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-220)to provide fund for conducting experiments.
文摘Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.
基金supported by the National Natural Science Fundationof China(61102109)
文摘To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.
基金supported by the Pre-research Fund (N0901-041)the Funding of Jiangsu Innovation Program for Graduate Education(CX09B 081Z CX10B 110Z)
文摘A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.
基金This project was supported by the National Natural Science Foundation of China (50405017) .
文摘For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.
基金partly supported by the Agency for Science,Technology and Research(A*Star)SERC(No.0521010037,0521210082)
文摘Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.
基金Supported by National Natural Science Foundation of China(Grant No.61733017)Foundation of State Key Laboratory of Robotics of China(Grant No.2018O13)Shanghai Pujiang Program of China(Grant No.18PJD018).
文摘A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.
基金Supported by Science & Engineering Research Council of Singnpore (0521010037)
文摘Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed.
基金the Deanship of Scientific Research at King Saud University through research group number(RG-1440-048)。
文摘For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(11JJ1010) supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China
文摘The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error.
基金Project supported by the National Natural Science Foundation ofChina (No. 60673024)the National Basic Research Program(973) of China (No. 2004CB719400)
文摘In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unscented particle filter (UPF) by an interaction step at the beginning. The framework (interaction/mixing, filtering, and combination) is similar to that in a standard IMM filter, but an UPF is adopted in each model. Therefore, the filtering performance and degeneracy phenomenon of particles are improved. The filtering method addresses nonlinear and/or non-Gaussian tracking problems. Simulation results show that the method has better tracking performance compared with the standard IMM-type filter and IMM particle filter.
基金Project(61101186)supported by the National Natural Science Foundation of China
文摘In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.