期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A TSE based design for MMSE and QRD of MIMO systems based on ASIP
1
作者 冯雪林 SHI Jinglin +3 位作者 CHEN Yang FU Yanlu ZHANG Qineng XIAO Feng 《High Technology Letters》 EI CAS 2023年第2期166-173,共8页
A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set process... A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations. 展开更多
关键词 multi-input and multi-output(MIMO) minimum mean-square error(MMSE) QR decomposition(QRD) taylor series expansion(TSE) application specific instruction set processor(ASIP) instruction set architecture(ISA) single instruction multiple data(SIMD) very long instruction word(VLIW)
下载PDF
LAI scale effect research based on compact airborne spectrographic imager data in the Heihe Oasis 被引量:1
2
作者 DAI Xiao-ai LIU Chao +9 位作者 LI Nai-wen WANG Mei-lian YANG Yu-wei YANG Xing-ping ZHANG Shi-qi HE Xu-wei YANG Zheng-li LU Heng LI Jing-zhong WANG Ze-kun 《Journal of Mountain Science》 SCIE CSCD 2021年第6期1630-1645,共16页
As one of the key parameters for characterizing crop canopy structure, Leaf Area Index(LAI) has great significance in monitoring the crop growth and estimating the yield. However, due to the nonlinearity and spatial h... As one of the key parameters for characterizing crop canopy structure, Leaf Area Index(LAI) has great significance in monitoring the crop growth and estimating the yield. However, due to the nonlinearity and spatial heterogeneity of LAI inversion model, there exists scale error in LAI inversion result, which limits the application of LAI product from different remote sensing data. Therefore, it is necessary to conduct studies on scale effect. This study was based on the Heihe Oasis, Zhangye city, Gansu province, China and the following works were carried out: Airborne hyperspectral CASI(Compact Airborne Spectrographic Imager) image and LAI statistic models were adopted in muti-scale LAI inversion. The overall difference of muti-scale LAI inversion was analyzed in an all-round way. This was based on two aspects, "first inversion and then integration" and "first integration and then inversion", and on scale difference characteristics of three scale transformation methods. The generation mechanism of scale effect was refined, and the optimal LAI inversion model was expanded by Taylor expansion. By doing so, it quantitatively analyzed the contribution of various inversion processes to scale effect. It was found that the cubic polynomial regression model based on NDVI(940.7 nm, 712 nm) was the optimal model, where its coefficient of determination R2 and the correlation coefficient of test samples R reached 0.72 and 0.936, respectively. Combined with Taylor expansion, it analyzed the scale error generated by LAI inversion model. After the scale effect correction of one-dimensional and twodimensional variables, the correlation coefficient of CCD-LAI(China Environment Satellite HJ/CCD images) and CASI-LAI products(Compact Airborne Spectro graphic Imager products) increased from 0.793 to 0.875 and 0.901, respectively. The mean value, standard deviation, and relative true value of the two went consistent. Compared with onedimensional variable correction method, the twodimensional method had a better correction result. This research used the effective information in hyperspectral data as sub-pixels and adopted Taylor expansion to correct the scale error in large-scale and low-resolution LAI product, achieving large-scale and high-precision LAI monitoring. 展开更多
关键词 Vegetation index Leaf Area Index Scale effect taylor series expansion model
原文传递
On Simplified Models for Dynamics of Pointlike Objects
3
作者 Marijan Ribarič +4 位作者 Luka Š terš 《Journal of Applied Mathematics and Physics》 2021年第8期1853-1869,共17页
<strong>Motivation:</strong> We study the asymptotic-type dynamics of various real pointlike objects that one models by a variety of differential equations. Their response to an external force one defines ... <strong>Motivation:</strong> We study the asymptotic-type dynamics of various real pointlike objects that one models by a variety of differential equations. Their response to an external force one defines solely by the trajectory of a single point. Its velocity eventually stops changing after cessation of the external force. The response of their acceleration to the long-term external force is slow and possibly nonlinear. <strong>Objective:</strong> Our objective is to present technique for making simplified models for the long-term dynamics of pointlike objects whose motion interacts with the surroundings. In the asymptotic-type long-term dynamics, the time variable <em>t</em> ∈ (<em>t<sub>m</sub></em>, +∞) and<em> t<sub>m</sub></em> > 0 is large, say <img src="Edit_6f0f7522-7319-4b30-a451-0453ff0f75d3.bmp" alt="" />! <strong>Method:</strong> We apply Taylor series expansion to differential equations to model the acceleration of pointlike object whose response to the long-term external force is not instantaneous and possibly nonlinear. <strong>Results:</strong> We make simplified models for the long-term dynamics of pointlike objects by Taylor polynomials in time derivatives of the external force. <strong>Application:</strong> We interpret the relativistic Lorentz-Abraham-Dirac equation as an equation for modeling the long-term dynamics, where <em>t</em> ≥ <em>t<sub>m</sub></em> <span style="white-space:nowrap;">&#8811;</span> 0. This interpretation resolves the conceptual and usage controversy surrounding its troublesome application to determine the trajectory of a radiating charged particle, thus contributing to the development of more adequate modeling of physical phenomena. 展开更多
关键词 Point Mass Long-Term Dynamics Harmonic Oscillator Drag Force Lorentz-Abraham-Dirac Equation taylor series expansion
下载PDF
An Alternative Approach to the Solution of Multi-Objective Geometric Programming Problems
4
作者 Ersoy Oz Nuran Guzel Selcuk Alp 《Open Journal of Optimization》 2017年第1期11-25,共15页
The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-o... The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method. 展开更多
关键词 Multi Objective Geometric Programming Kuhn-Tucker Conditions taylor series expansion Numerical Method Weighted Mean Method
下载PDF
Power system transient stability simulation under uncertainty based on Taylor model arithmetic
5
作者 Shouxiang WANG Zhijie ZHENG Chengshan WANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2009年第2期220-226,共7页
The Taylor model arithmetic is introduced to deal with uncertainty.The uncertainty of model parameters is described by Taylor models and each variable in functions is replaced with the Taylor model(TM).Thus,time domai... The Taylor model arithmetic is introduced to deal with uncertainty.The uncertainty of model parameters is described by Taylor models and each variable in functions is replaced with the Taylor model(TM).Thus,time domain simulation under uncertainty is transformed to the integration of TM-based differential equations.In this paper,the Taylor series method is employed to compute differential equations;moreover,power system time domain simulation under uncertainty based on Taylor model method is presented.This method allows a rigorous estimation of the influence of either form of uncertainty and only needs one simulation.It is computationally fast compared with the Monte Carlo method,which is another technique for uncertainty analysis.The proposed method has been tested on the 39-bus New England system.The test results illustrate the effectiveness and practical value of the approach by comparing with the results of Monte Carlo simulation and traditional time domain simulation. 展开更多
关键词 interval arithmetic power systems taylor series expansion taylor model time domain simulation transient stability UNCERTAINTY
原文传递
A Nonlinear Optimal Control Approach for Tracked Mobile Robots
6
作者 RIGATOS Gerasimos 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第4期1279-1300,共22页
The article proposes a nonlinear optimal(H-infinity)control approach for the model of a tracked robotic vehicle.The kinematic model of such a tracked vehicle takes into account slippage effects due to the contact of t... The article proposes a nonlinear optimal(H-infinity)control approach for the model of a tracked robotic vehicle.The kinematic model of such a tracked vehicle takes into account slippage effects due to the contact of the tracks with the ground.To solve the related control problem,the dynamic model of the vehicle undergoes first approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm.The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the vehicle.For the approximately linearized description of the tracked vehicle a stabilizing H-infinity feedback controller is designed.To compute the controller’s feedback gains an algebraic Riccati equation is solved at each time-step of the control method.The stability properties of the control scheme are proven through Lyapunov analysis.It is also demonstrated that the control method retains the advantages of linear optimal control,that is fast and accurate tracking of reference setpoints under moderate variations of the control inputs. 展开更多
关键词 Approximate linearization global asymptotic stability H-infinity control Jacobian matrices Lyapunov analysis nonlinear optimal control taylor series expansion tracked robotic vehicle
原文传递
Approximate Solutions to the Hamilton-Jacobi Equations for Generating Functions
7
作者 HAO Zhiwei FUJIMOTO Kenji ZHANG Qiuhua 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第2期261-288,共28页
For a nonlinear finite time optimal control problem,a systematic numerical algorithm to solve the Hamilton-Jacobi equation for a generating function is proposed in this paper.This algorithm allows one to obtain the Ta... For a nonlinear finite time optimal control problem,a systematic numerical algorithm to solve the Hamilton-Jacobi equation for a generating function is proposed in this paper.This algorithm allows one to obtain the Taylor series expansion of the generating function up to any prescribed order by solving a sequence of first order ordinary differential equations recursively.Furthermore,the coefficients of the Taylor series expansion of the generating function can be computed exactly under a certain technical condition.Once a generating function is found,it can be used to generate a family of optimal control for different boundary conditions.Since the generating function is computed off-line,the on-demand computational effort for different boundary conditions decreases a lot compared with the conventional method.It is useful to online optimal trajectory generation problems.Numerical examples illustrate the effectiveness of the proposed algorithm. 展开更多
关键词 Generating functions Hamilton-Jacobi equations optimal control taylor series expansion two-point boundary-value problems
原文传递
A Nonlinear Optimal Control Method for Attitude Stabilization of Micro-Satellites
8
作者 G.Rigatos M.Abbaszadeh +1 位作者 K.Busawon L.Dala 《Guidance, Navigation and Control》 2022年第3期30-67,共38页
Attitude control and stabilization of micro-satellites is a nontrivial problem due to the highly nonlinear and multivariable structure of the satellites'state-space model.In this paper,a novel nonlinear optimal(H-... Attitude control and stabilization of micro-satellites is a nontrivial problem due to the highly nonlinear and multivariable structure of the satellites'state-space model.In this paper,a novel nonlinear optimal(H-infinity)control approach is developed for this control problem.The dynamic model of the satellite's attitude dynamics undergoesfirst approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm.The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the satellite's attitude dynamics.For the approximately linearized description of the satellite's attitude a stabilizing H-infinity feedback controller is designed.To compute the controller's feedback gains,an algebraic Riccati equation is solved at each time-step of the control method.The stability properties of the control scheme are proven through Lyapunov analysis.It is also demonstrated that the control method retains the advantages of linear optimal control that is fast and accurate tracking of the reference setpoints under moderate variations of the control inputs. 展开更多
关键词 Micro-satellites attitude control nonlinear optimal control H-infinity control differentialfiatness properties taylor series expansion Jacobian matrices Lyapunov analysis global asymptotic stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部