期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Application of teleseismic tomography to the study of shallow structure beneath Shizigou in the western Qaidam basin
1
作者 Xiaoming Xu Yinsheng Ma +2 位作者 Danian Shi Xiaofeng Wang Chengming Yin 《Earthquake Science》 CSCD 2009年第2期189-195,共7页
Teleseismic body wave traveltime tomography is used to inverse the three-dimensional seismic velocity structure beneath Shizigou in the western Qaidam basin. The travel time are picked from the continuous observation ... Teleseismic body wave traveltime tomography is used to inverse the three-dimensional seismic velocity structure beneath Shizigou in the western Qaidam basin. The travel time are picked from the continuous observation data on a small seismic array of stations deployed during 2004-2007. The tomographic results obtained indicate that a NW-trending low velocity anomaly just beneath the target region insert northeastwards with a high dip angle. In the north, northeast and east of the low velocity anomaly, some high-velocity anomalies distribute with the same strike and coverage as those of Shizigou anticline. 展开更多
关键词 Qaidam basin velocity structure traveltime residuals teleseismic tomography
下载PDF
A review of the influencing factors on teleseismic traveltime tomography
2
作者 Yang Pan Shaolin Liu +4 位作者 Dinghui Yang Wenshuai Wang Xiwei Xu Wenhao Shen Mengyang Li 《Earthquake Science》 2023年第3期228-253,共26页
Teleseismic traveltime tomography is an important tool for investigating the crust and mantle structure of the Earth.The imaging quality of teleseismic traveltime tomography is affected by many factors,such as mantle ... Teleseismic traveltime tomography is an important tool for investigating the crust and mantle structure of the Earth.The imaging quality of teleseismic traveltime tomography is affected by many factors,such as mantle heterogeneities,source uncertainties and random noise.Many previous studies have investigated these factors separately.An integral study of these factors is absent.To provide some guidelines for teleseismic traveltime tomography,we discussed four main influencing factors:the method for measuring relative traveltime differences,the presence of mantle heterogeneities outside the imaging domain,station spacing and uncertainties in teleseismic event hypocenters.Four conclusions can be drawn based on our analysis.(1)Comparing two methods,i.e.,measuring the traveltime difference between two adjacent stations(M1)and subtracting the average traveltime of all stations from the traveltime of one station(M2),reveals that both M1 and M2 can well image the main structures;while M1 is able to achieve a slightly higher resolution than M2;M2 has the advantage of imaging long wavelength structures.In practical teleseismic traveltime tomography,better tomography results can be achieved by a two-step inversion method.(2)Global mantle heterogeneities can cause large traveltime residuals(up to about 0.55 s),which leads to evident imaging artifacts.(3)The tomographic accuracy and resolution of M1 decrease with increasing station spacing when measuring the relative traveltime difference between two adjacent stations.(4)The traveltime anomalies caused by the source uncertainties are generally less than 0.2 s,and the impact of source uncertainties is negligible. 展开更多
关键词 teleseismic tomography influencing factors relative traveltime differences mantle heterogeneities station spacing
下载PDF
Eastward subduction of the Indian plate beneath the Indo-Myanmese arc revealed by teleseismic P-wave tomography
3
作者 Yu Gao Jiansi Yang Yu Zheng 《Earthquake Science》 2022年第4期243-262,共20页
The deep structure of the eastward-subducting Indian plate can provide new information on the dynamics of the India-Eurasia collision.We collected and processed waveform data from temporary seismic arrays(networks)on ... The deep structure of the eastward-subducting Indian plate can provide new information on the dynamics of the India-Eurasia collision.We collected and processed waveform data from temporary seismic arrays(networks)on the eastern Tibetan Plateau,seismic arrays in Northeast India and Myanmar,and permanent stations of the China Digital Seismic Network in Tibet,Gansu,Qinghai,Yunnan,and Sichuan.We combined these data with phase reports from observation stations of the International Seismological Center on the Indian plate and selected 124,808 high-quality P-wave relative travel-time residuals.Next,we used these data to invert the 3-D P-wave velocity structure of the upper mantle to a depth of 800 km beneath the eastern segment of the arcuate Himalayan orogen,at the southeastern margin of the Tibetan Plateau.The results reveal a high-angle,easterly dipping subducting plate extending more than 200 km beneath the Indo-Myanmese arc.The plate breaks off at roughly 96°E;its fragments have passed through the 410-km discontinuity(D410)into the mantle transition zone(MTZ).The MTZ beneath the Tengchong volcanic area contains a high-velocity anomaly,which does not exceed the Red River fault to the east.No other large-scale continuous subducted plates were observed in the MTZ.However,a horizontally spreading high-velocity anomaly was identified on the D410 in some regions.The anomaly may represent the negatively buoyant 90°E Ridge plate or a thickened and delaminated lithospheric block experiencing collision and compression at the southeastern margin of the Tibetan Plateau.The Tengchong volcano may originate from the mantle upwelling through the slab window formed by the break-off of the subducting Indian continental plate and oceanic plate in the upper mantle.Low-velocity upper mantle materials on the west side of the Indo-Myanmese arc may have supplemented materials to the Tengchong volcano. 展开更多
关键词 teleseismic tomography plate gap Indo-Myanmese arc Tengchong volcano 90°E Ridge
下载PDF
P-wave velocity structure in the crust and the uppermost mantle of Chao Lake region of the Tan-Lu Fault inferred from teleseismic arrival time tomography 被引量:1
4
作者 Bem Shadrach Terhemba Huajian Yao +3 位作者 Song Luo Lei Gao Haijiang Zhang Junlun Li 《Earthquake Science》 2022年第6期427-447,共21页
Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth part... Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion. 展开更多
关键词 teleseismic arrival time tomography v P velocity structure crust and uppermost mantle Tan-Lu Fault Chao Lake
下载PDF
Constraints on the geodynamic evolution of the Africa-Iberia plate margin across the Gibraltar Strait from seismic tomography
5
作者 S.Monna A.Argnani +2 位作者 G.B.Cimini F.Frugoni C.Montuori 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第1期39-48,共10页
Geophysical studies point to a complex tectonic and geodynamic evolution of the Alboran Basin and Gulf of Cadiz. Tomograpbic images show strong seismic waves velocity contrasts in the upper mantle. The high velocity a... Geophysical studies point to a complex tectonic and geodynamic evolution of the Alboran Basin and Gulf of Cadiz. Tomograpbic images show strong seismic waves velocity contrasts in the upper mantle. The high velocity anomaly beneath the Alboran Sea recovered by a number of studies is now a well estab- lished feature. Several geodynamic reconstructions have been proposed also on the base of these images. We present and elaborate on restllts coming from a recent tomography study which concentrates on both the Alboran and the adjacent Atlantic region. These new results, while they confirm the existence of the fast anomaly below the Alboran region, also show interesting features of the lithosphere-asthenosphere system below the Atlantic. A high velocity body is imaged roughly below the Horseshoe Abyssal plain down to sub-lithospheric depths. This feature suggests either a possible initiation or relic subduction. Pronounced low velocity anomalies pervade the upper mantle below the Atlantic region and separate the lithospheres of the two regions. We also notice a strong change of the upper mantle velocity structure going from south to north across the Gorringe Bank. This variation in structure could be related to the different evolution in the opening of the central and northern Atlantic oceans. 展开更多
关键词 Affica-lberia plate margin teleseismic tomography Velocity anomaly Mantle upwelling Lithospheric subduction
下载PDF
Source side seismic tomography(3STomo):A novelmethod to image the subsurface structure beneath seismically active region
6
作者 Ting Yang Shenyi Gu Khanh Phon Le 《Earthquake Science》 CSCD 2010年第6期637-643,共7页
We propose a novel seismic tomography method, Source Side Seismic Tomography (3STomo), which is designed particularly to image the subsurface structure beneath seismically active regions. Unlike the teleseismic tomo... We propose a novel seismic tomography method, Source Side Seismic Tomography (3STomo), which is designed particularly to image the subsurface structure beneath seismically active regions. Unlike the teleseismic tomography, in which the data are relative traveltime residuals between closely spaced stations for each teleseismic event, 3STomo uses relative traveltime shifts between earthquakes within the study region for each distant station. Given the relatively evener distribution of global seismic stations, this method has unique advantages for imaging the structure beneath regions that have numerous earthquakes but lack of dense seismic stations, for example, some subduction zones and spreading ridges in the ocean. In addition, 3STomo has potentially better vertical resolution at shallow depths than the traditional teleseismic tomo- graphy. The effect of the inaccurate source parameters on its resolution can be minimized by using depth phases and the technique of joint source and structure inversion. Numerical experiments and application to Luzon Island, Philippines show that 3STomo can be a valuable tool to investigate the subsurface structure beneath some areas where the traditional method cannot be applied to, or at least it can be used as a complementary component of conventional teleseismic tomography to obtain better back-azimuth coverage and achieve higher resolution at shallow depths in the inversion. 展开更多
关键词 seismic tomography teleseismic tomography subduction zone LITHOSPHERE Luzon Island
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部