Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite ne...Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.展开更多
Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct th...Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct the dual transition metal tellurides(CoTe_(2)/ZnTe),which are anchored onto two-dimensional(2D)Ti_(3)C_(2)T_(x)MXene nanosheets.Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe_(2)/ZnTe interfaces,improving K+diffusion and adsorption.In addition,the different work functions between CoTe_(2)/ZnTe induce a robust built-in electric field at the CoTe_(2)/ZnTe interface,providing a strong driving force to facilitate charge transport.Moreover,the conductive and elastic Ti_(3)C_(2)T_(x)can effectively promote electrode conductivity and alleviate the volume change of CoTe_(2)/ZnTe heterostructures upon cycling.Owing to these merits,the resulting CoTe_(2)/ZnTe/Ti_(3)C_(2)T_(x)(CZT)exhibit excellent rate capability(137.0 mAh g^(-1)at 10 A g^(-1))and cycling stability(175.3 mAh g^(-1)after 4000 cycles at 3.0 A g^(-1),with a high capacity retention of 89.4%).More impressively,the CZT-based full cells demonstrate high energy density(220.2 Wh kg^(-1))and power density(837.2 W kg^(-1)).This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.展开更多
β-Bromovinyl tellurides are new difuctional reagents which undergo palladium-catalyzed cross-coupling reaction with alkenes to give conjugated dienyl tellurides.
Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode g...Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode gold deposits(Ciobanu and Cook,2002;Pals et al.展开更多
The title compound was prepared from the corresponding elements(Sm, Te) using iodine as transport agent. The crystal structure was determined by the single crystal X-ray diffraction techniques with the crystal data as...The title compound was prepared from the corresponding elements(Sm, Te) using iodine as transport agent. The crystal structure was determined by the single crystal X-ray diffraction techniques with the crystal data as follows: SmTe3,M_r= 533. 15, orthorhombic. Cmcm, a=4. 323(2), b= 25. 613(3),c=4. 335(2) A,V=480. 0 A ̄3, Z=4, D_x=7. 38 g/cm ̄3, F(000) =872,μ= 300. 2 cm ̄(-1), R=0. 061,Rw.=0. 066 for 660 observed(I≥3σ(I)) unique reflections. The compound is isostructural with NdTe_3 ̄[1].展开更多
Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overa...Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overall performance of rechargeable batteries heavily depends on their electrode materials.Transition metal tellurides have recently gained significant attention due to their high electrical conductivity and density.Cobalt telluride has received the most extensive research due to its catalytic activity,unique magnetic properties,and diverse composition and crystal structure.Nevertheless,its limited conductivity and significant volume variation contribute to electrode structural deterioration and rapid capacity decline.This review comprehensively summarizes recent advances in rational design and synthesis of modified cobalt telluride-based electrodes,encompassing defect engineering(Te vacancies,cation vacancies,heterointerfaces,and homogeneous interfaces)and composite engineering(derived carbon from precursors,carbon fibers,Mxene,graphene nanosheets,etc.).Particularly,the intricate evolution mechanisms of the conversion reaction process during cycling are elucidated.Furthermore,these modified strategies applied to other transitional metal tellurides,such as iron telluride,nickel telluride,zinc telluride,copper telluride,molybdenum telluride,etc.,are also thoroughly summarized.Additionally,their application extends to emerging aqueous zinc-ion batteries.Finally,potential challenges and prospects are discussed to further propel the development of transition metal tellurides electrode materials for next-generation rechargeable batteries.展开更多
Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single pha...Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single phase materials except previously reported hexagonal Cr_(1-x)Te half metal where a relatively high magnetic entropy change(-△S_(M))of~2.4 J·kg^(-1)·K^(-1)@5 T and a moderate thermoelectric figure of merit(ZT)of~1.2×10^(-2)@300 K are simultaneously recorded.Herein we aim to increase the thermoelectric performance of Cr_(1-x)Te by compositing with semiconducting Ag_(2)Te.It is discovered that the in-situ synthesis of Cr_(1-x)Te/Ag_(2)Te composites by reacting their constitute elements above melting temperatures is unsuccessful because of strong phase competition.Specifically,at elevated temperatures(T>800 K),Cr_(1-x)Te has a much lower deformation energy than Ag_(2)Te and tends to become more Cr-deficient by capturing Te from Ag_(2)Te.Therefore,Ag is insufficiently reacted and as a metal it deteriorates ZT.We then rationalize the synthesis of Cr_(1-x)Te/Ag_(2)Te composites by ex-situ mix of the pre-prepared Cr_(1-x)Te and Ag_(2)Te binary compounds followed by densification at a low sintering temperature of 573 K under a pressure of 3.5 GPa.We show that by compositing with 7 mol%Ag_(2)Te,the Seebeck coefficient of Cr_(1-x)Te is largely increased while the lattice thermal conductivity is considerably reduced,leading to 72%improvement of ZT.By comparison,-△S_(M)is only slightly reduced by 10%in the composite.Our work demonstrates the potential of Cr_(1-x)Te/Ag_(2)Te composites for thermoelectromagnetic cooling.展开更多
Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts ...Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts for membrane electrode fabrication are required to drive the electrolysis reactions.Herein,the efficient catalytic promotion effect of a novel catalyst promoter,CoTe,on Pt is demonstrated for low carbon alcohol fuels of methanol and ethanol electrolysis for hydrogen generation.Experimental and density functional theory calculation results indicate that the optimized electronic structure of Pt–CoTe/C resulting from the synergetic effect between Pt and CoTe further regulates the adsorption energies of CO and H*that enhances the catalytic ability for methanol and ethanol electrolysis.Moreover,the good water activation ability of CoTe and the strong electronic effect of Pt and CoTe increased the tolerance ability to the poisoning species as demonstrated by the CO-stripping technique.The high catalytic kinetics and stability,as well as the promotion effect,were also carefully discussed.Specifically,71.9%and 75.5%of the initial peak current density was maintained after 1000 CV cycles in acid electrolyte for methanol and ethanol oxidation;and a low overpotential of 30 and 35 mV was required to drive the hydrogen evolution reaction in methanol and ethanol solution at the current density of 10 mA cm^(-2).In the two-electrode system for alcohol fuels electrolysis,using the optimal Pt–CoTe/C catalyst as bi-functional catalysts,the cell potential of 0.66 V(0.67 V)was required to achieve 10 mA cm^(-2) for methanol(ethanol)electrolysis,much smaller than that of water electrolysis(1.76 V).The current study offers a novel platform for hydrogen generation via low carbon alcohol fuel electrolysis,and the result is helpful to the catalysis mechanism understanding of Pt assisted by the novel promoter.展开更多
Te treatment is an effective method for modifying sulfide inclusions,and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance.In most actual industrial applications of Te tr...Te treatment is an effective method for modifying sulfide inclusions,and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance.In most actual industrial applications of Te treatment,MnTe precipitation is unexpected.The critical precipitation behavior of MnTe inclusions was investigated through scanning electron microscopy,transmission electron microscopy,machine learning,and first-principles calculation.MnTe preferentially precipitated at the container mouth for sphere-like sulfides and at the interface between MnS grain boundaries and steel matrix for rod-like sulfides.The MnS/MnTe interface was semicoherent.A composition transition zone with a rock-salt structure exhibiting periodic changes existed to maintain the semicoherent interface.The critical precipitation behavior of MnTe inclusions in resulfurized steels involved three stages at varying temperatures.First,Mn(S,Te)precipitated during solidification.Second,MnTe with a rock-salt structure precipitated from Mn(S,Te).Third,MnTe with a hexagonal NiAs structure transformed from the rock-salt structure.The solubility of Te in MnS decreased with decreasing temperature.The critical precipitation behavior of MnTe inclusions in resulfurized steels was related to the MnS precipitation temperature.With the increase in MnS precipitation temperature,the critical Te/S weight ratio decreased.In consideration of the cost-effectiveness of Te addition for industrial production,the Te content in resulfurized steels should be controlled in accordance with MnS precipitation temperature and S content.展开更多
A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure opt...A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.展开更多
Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damag...Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damage in the dynamic service process,resulting in the formation of microcracks and performance degradation.Herein,we prepare a new hybrid hydrogel thermoelectric material PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7)by an in situ polymerization method,which shows a high stretchable and self-healable performance,as well as a good thermoelectric performance.For the sample with Bi_(2)Se_(0.3)Te_(2.7)content of 1.5 wt%(i.e.,PAAc/XG/Bi2Se0.3Te27(1.5 wt%)),which has a room temperature Seebeck coefficient of-0.45 mV K^(-1),and exhibits an open-circuit voltage of-17.91 mV and output power of 38.1 nW at a temperature difference of 40 K.After being completely cut off,the hybrid thermoelectric hydrogel automatically recovers its electrical characteristics within a response time of 2.0 s,and the healed hydrogel remains more than 99%of its initial power output.Such stretchable and self-healable hybrid hydrogel thermoelectric materials show promising potential for application in dynamic service conditions,such as wearable electronics.展开更多
A summary of research on the structure of Nb/Ta layered tellurides in the past period is reported. 14 compounds, which have been structurally characterized by X-ray diffraction work, are presented according to their s...A summary of research on the structure of Nb/Ta layered tellurides in the past period is reported. 14 compounds, which have been structurally characterized by X-ray diffraction work, are presented according to their structural features. The first two compounds, Nb2CrTe4 and Nb2Cu1.48Te4, are characterized in that the ternary atoms are inserted in the different layers from the Nb atoms. While in the other compounds, both kinds of metal atoms are inserted in the same layer. The six compounds with formula M2M′2Te4(M = Nb/Ta; M′ = Ni, Co, Fe) are characterized in that their structure can be described as construction by using cluster units 'M2M′2Te10' as building blocks. In the two metal-rich compounds, TaCo2Te2 and TaNi2Te2, Ta atom has a distorted mono-capped pentagonal prism configuration. The structure of TaFeTe3, TaNi2Te3 and NbNi2.34Te3can be described as building by the arrangement of double octahedral chains (DOC). In this connection, a selenide Ta2Ni2Se5 is also included by using the second type of DOC arrangement as the basis to build the structure.展开更多
The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide suffici...The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.展开更多
In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered te...In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered ternary metal chalcogenide,Eu_(2)InTe_(5).Our results show that Eu_(2)InTe_(5) is a non-zero-gap metal with a layered structure characterized by strong intra-layer atomic bonding and weak inter-layer interaction,which suggests its potential application as a nanomaterial.We also studied the optical properties,including the absorption coefficient,imaginary and real parts of the complex dielectric constant,and found that Eu_(2)InTe_(5) exhibits strong photoresponse characteristics at the junction of ultraviolet and visible light as well as blue-green light,with peaks at wavelengths of 389 nm and 477 nm.This suggests that it could be used in the development of UV(ultraviolet)detectors and other optoelectronic devices.Furthermore,due to its strong absorption,low loss,and low reflectivity,Eu_(2)InTe_(5) has the potential to be used as a promising photovoltaic absorption layer in solar cells.展开更多
This paper describes the progress on the synthesis of organic selenides and tellurides and their application in organic synthesis. Low dent selenium and telluronium compounds having high reducing selectivity can be us...This paper describes the progress on the synthesis of organic selenides and tellurides and their application in organic synthesis. Low dent selenium and telluronium compounds having high reducing selectivity can be used to form carbon-hydrogen bonds an special reducing reagents. Telluronium ylides can react with aldehydes and ketones by Wittig-type condensation to produce (E)-configuration alkenes stereoselectively. α-Phenylselanyl arsonium ylides were prepared by transylidation reaction of arsonium ylides with phenylselanyl halides which can undergo Wittig-type reactions with carbonyl compounds to give (Z)-α-selanyl-α,β-unsaturated compounds with high stereoselectivity. Zirconium, tin, boron, halogen, metal or hetero-atom were introduced in organoselenium and telluronium compounds an new difunctional group reagents. Under transition metal catalysis, the corresponding cross coupling reactions provide new methods of formation of carbon-carbon double bonds, which were used in the stereoselective synthesis of the alkenes.展开更多
Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline H...Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline HER kinetics.Here,we design ternary transition metals-based nickel telluride(Mo WNi Te)catalysts consisting of high valence non-3d Mo and W metals and oxophilic Te as a first demonstration of non-precious heterogeneous electrocatalysts following the bifunctional mechanism.The Mo WNi Te showed excellent HER catalytic performance with overpotentials of 72,125,and 182 mV to reach the current densities of 10,100,and 1000 mA cm^(-2),respectively,and the corresponding Tafel slope of 47,52,and 58 mV dec-1in alkaline media,which is much superior to commercial Pt/C.Additionally,the HER performance of Mo WNi Te is well maintained up to 3000 h at the current density of 100 mA cm^(-2).It is further demonstrated that the Mo WNi Te exhibits remarkable HER activities with an overpotential of 45 mV(31 mV)and Tafel slope of 60 mV dec-1(34 mV dec-1)at 10 mA cm^(-2)in neutral(acid)media.The superior HER performance of Mo WNi Te is attributed to the electronic structure modulation,inducing highly active low valence states by the incorporation of high valence non-3d transition metals.It is also attributed to the oxophilic effect of Te,accelerating water dissociation kinetics through a bifunctional catalytic mechanism in alkaline media.Density functional theory calculations further reveal that such synergistic effects lead to reduced free energy for an efficient water dissociation process,resulting in remarkable HER catalytic performances within universal pH environments.展开更多
It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) wi...It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media.展开更多
In this study,pure Ni was demonstrated to protect the GH3535 alloy from Te vapor corrosion because of its strong absorption capacity.Severe Te corrosion of a single GH3535 alloy sample occurred in Te vapor at 700C,whi...In this study,pure Ni was demonstrated to protect the GH3535 alloy from Te vapor corrosion because of its strong absorption capacity.Severe Te corrosion of a single GH3535 alloy sample occurred in Te vapor at 700C,which manifested as complex surface corrosion products and deep intergranular cracks.However,when pure Ni and the GH3535 alloy were put together in the vessel,the GH3535 alloy was completely protected from Te corrosion at the expense of the pure Ni.Thermodynamic calculations proved that the preferential reaction between pure Ni and Te vapor reduced the activity of Te vapor considerably,preventing the corrosion of the GH3535 alloy.Our study reveals one potential approach for protecting the alloys used in molten-salt reactors from Te corrosion.展开更多
Design of cost-effective,yet highly active electrocatalysts for nitrogen reduction reaction(NRR)is of vital significance for sustainable electrochemical NH_(3) synthesis.Herein,we have demonstrated,from both computati...Design of cost-effective,yet highly active electrocatalysts for nitrogen reduction reaction(NRR)is of vital significance for sustainable electrochemical NH_(3) synthesis.Herein,we have demonstrated,from both computational and experimental perspectives,that FeTe_(2) can be an efficient and durable NRR catalyst.Theoretical computations unveil that FeTe_(2) possesses abundant surface-terminated and low-coordinate Fe sites that can activate the NRR with a low limiting potential(-0.84 V)and currently impede the competing hydrogen evolution reaction.As a proof-of-concept prototype,we synthesized FeTe_(2) nanoparticles supported on reduced graphene oxide(FeTe_(2)/RGO),which exhibited a high NRR activity with the exceptional combination of NH_(3) yield(39.2 lg h^(-1) mg^(-1))and Faradaic efficiency(18.1%),thus demonstrating the feasibility of using FeTe_(2) and other earth-abundant metal tellurides for electrocatalytic N_(2) fixation.展开更多
基金supported by the International Collaboration Program of Jilin Provincial Department of Science and Technology,China(20230402051GH)the National Natural Science Foundation of China(51932003,51902050)+2 种基金the Open Project Program of Key Laboratory of Preparation and Application of Environmental friendly Materials(Jilin Normal University)of Ministry of China(2021006)the Fundamental Research Funds for the Central Universities JLU“Double-First Class”Discipline for Materials Science&Engineering。
文摘Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.
基金The authors thank the financial support from the National Natural Science Foundation of China(No.52201242 and 52250010)Natural Science Foundation of Jiangsu Province(No.BK20200386)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)the Fundamental Research Funds for the Central Universities(No.2242022R40018).
文摘Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct the dual transition metal tellurides(CoTe_(2)/ZnTe),which are anchored onto two-dimensional(2D)Ti_(3)C_(2)T_(x)MXene nanosheets.Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe_(2)/ZnTe interfaces,improving K+diffusion and adsorption.In addition,the different work functions between CoTe_(2)/ZnTe induce a robust built-in electric field at the CoTe_(2)/ZnTe interface,providing a strong driving force to facilitate charge transport.Moreover,the conductive and elastic Ti_(3)C_(2)T_(x)can effectively promote electrode conductivity and alleviate the volume change of CoTe_(2)/ZnTe heterostructures upon cycling.Owing to these merits,the resulting CoTe_(2)/ZnTe/Ti_(3)C_(2)T_(x)(CZT)exhibit excellent rate capability(137.0 mAh g^(-1)at 10 A g^(-1))and cycling stability(175.3 mAh g^(-1)after 4000 cycles at 3.0 A g^(-1),with a high capacity retention of 89.4%).More impressively,the CZT-based full cells demonstrate high energy density(220.2 Wh kg^(-1))and power density(837.2 W kg^(-1)).This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.
基金This work was supported by Natural Science Foundation of Zhejiang Province.
文摘β-Bromovinyl tellurides are new difuctional reagents which undergo palladium-catalyzed cross-coupling reaction with alkenes to give conjugated dienyl tellurides.
基金supported by the Natural Science Foundation of China(grants 9081400440821061)the 111 Project(B07039)
文摘Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode gold deposits(Ciobanu and Cook,2002;Pals et al.
文摘The title compound was prepared from the corresponding elements(Sm, Te) using iodine as transport agent. The crystal structure was determined by the single crystal X-ray diffraction techniques with the crystal data as follows: SmTe3,M_r= 533. 15, orthorhombic. Cmcm, a=4. 323(2), b= 25. 613(3),c=4. 335(2) A,V=480. 0 A ̄3, Z=4, D_x=7. 38 g/cm ̄3, F(000) =872,μ= 300. 2 cm ̄(-1), R=0. 061,Rw.=0. 066 for 660 observed(I≥3σ(I)) unique reflections. The compound is isostructural with NdTe_3 ̄[1].
基金financially supported by the National Natural Science Foundation of China (Nos.52171202,52177208,52071073)the financial support from CSIRO+3 种基金the Department of Climate Change,Energy,the Environment and Water (DCCEEW)Australian Governmentthe Australian Hydrogen Research Network (AHRN)the Australian Research Council (DE230100327 and LP220200583)the support from the DCCEEW International Clean Innovation Researcher Networks Grant (ICIRN000011)。
文摘Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overall performance of rechargeable batteries heavily depends on their electrode materials.Transition metal tellurides have recently gained significant attention due to their high electrical conductivity and density.Cobalt telluride has received the most extensive research due to its catalytic activity,unique magnetic properties,and diverse composition and crystal structure.Nevertheless,its limited conductivity and significant volume variation contribute to electrode structural deterioration and rapid capacity decline.This review comprehensively summarizes recent advances in rational design and synthesis of modified cobalt telluride-based electrodes,encompassing defect engineering(Te vacancies,cation vacancies,heterointerfaces,and homogeneous interfaces)and composite engineering(derived carbon from precursors,carbon fibers,Mxene,graphene nanosheets,etc.).Particularly,the intricate evolution mechanisms of the conversion reaction process during cycling are elucidated.Furthermore,these modified strategies applied to other transitional metal tellurides,such as iron telluride,nickel telluride,zinc telluride,copper telluride,molybdenum telluride,etc.,are also thoroughly summarized.Additionally,their application extends to emerging aqueous zinc-ion batteries.Finally,potential challenges and prospects are discussed to further propel the development of transition metal tellurides electrode materials for next-generation rechargeable batteries.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0704900)the National Natural Science Foundation of China(Grant No.52171221)。
文摘Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single phase materials except previously reported hexagonal Cr_(1-x)Te half metal where a relatively high magnetic entropy change(-△S_(M))of~2.4 J·kg^(-1)·K^(-1)@5 T and a moderate thermoelectric figure of merit(ZT)of~1.2×10^(-2)@300 K are simultaneously recorded.Herein we aim to increase the thermoelectric performance of Cr_(1-x)Te by compositing with semiconducting Ag_(2)Te.It is discovered that the in-situ synthesis of Cr_(1-x)Te/Ag_(2)Te composites by reacting their constitute elements above melting temperatures is unsuccessful because of strong phase competition.Specifically,at elevated temperatures(T>800 K),Cr_(1-x)Te has a much lower deformation energy than Ag_(2)Te and tends to become more Cr-deficient by capturing Te from Ag_(2)Te.Therefore,Ag is insufficiently reacted and as a metal it deteriorates ZT.We then rationalize the synthesis of Cr_(1-x)Te/Ag_(2)Te composites by ex-situ mix of the pre-prepared Cr_(1-x)Te and Ag_(2)Te binary compounds followed by densification at a low sintering temperature of 573 K under a pressure of 3.5 GPa.We show that by compositing with 7 mol%Ag_(2)Te,the Seebeck coefficient of Cr_(1-x)Te is largely increased while the lattice thermal conductivity is considerably reduced,leading to 72%improvement of ZT.By comparison,-△S_(M)is only slightly reduced by 10%in the composite.Our work demonstrates the potential of Cr_(1-x)Te/Ag_(2)Te composites for thermoelectromagnetic cooling.
基金supported by the National Natural Science Foundation of China(No.21972124,22102105)a project funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionL.Feng also thanks the support of the Six Talent Peaks Project of Jiangsu Province(XCL-070-2018).
文摘Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts for membrane electrode fabrication are required to drive the electrolysis reactions.Herein,the efficient catalytic promotion effect of a novel catalyst promoter,CoTe,on Pt is demonstrated for low carbon alcohol fuels of methanol and ethanol electrolysis for hydrogen generation.Experimental and density functional theory calculation results indicate that the optimized electronic structure of Pt–CoTe/C resulting from the synergetic effect between Pt and CoTe further regulates the adsorption energies of CO and H*that enhances the catalytic ability for methanol and ethanol electrolysis.Moreover,the good water activation ability of CoTe and the strong electronic effect of Pt and CoTe increased the tolerance ability to the poisoning species as demonstrated by the CO-stripping technique.The high catalytic kinetics and stability,as well as the promotion effect,were also carefully discussed.Specifically,71.9%and 75.5%of the initial peak current density was maintained after 1000 CV cycles in acid electrolyte for methanol and ethanol oxidation;and a low overpotential of 30 and 35 mV was required to drive the hydrogen evolution reaction in methanol and ethanol solution at the current density of 10 mA cm^(-2).In the two-electrode system for alcohol fuels electrolysis,using the optimal Pt–CoTe/C catalyst as bi-functional catalysts,the cell potential of 0.66 V(0.67 V)was required to achieve 10 mA cm^(-2) for methanol(ethanol)electrolysis,much smaller than that of water electrolysis(1.76 V).The current study offers a novel platform for hydrogen generation via low carbon alcohol fuel electrolysis,and the result is helpful to the catalysis mechanism understanding of Pt assisted by the novel promoter.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52104335,51874195 and 52074179)the Shanghai“Super Postdoctoral”Incentive Plan(No.2020194).
文摘Te treatment is an effective method for modifying sulfide inclusions,and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance.In most actual industrial applications of Te treatment,MnTe precipitation is unexpected.The critical precipitation behavior of MnTe inclusions was investigated through scanning electron microscopy,transmission electron microscopy,machine learning,and first-principles calculation.MnTe preferentially precipitated at the container mouth for sphere-like sulfides and at the interface between MnS grain boundaries and steel matrix for rod-like sulfides.The MnS/MnTe interface was semicoherent.A composition transition zone with a rock-salt structure exhibiting periodic changes existed to maintain the semicoherent interface.The critical precipitation behavior of MnTe inclusions in resulfurized steels involved three stages at varying temperatures.First,Mn(S,Te)precipitated during solidification.Second,MnTe with a rock-salt structure precipitated from Mn(S,Te).Third,MnTe with a hexagonal NiAs structure transformed from the rock-salt structure.The solubility of Te in MnS decreased with decreasing temperature.The critical precipitation behavior of MnTe inclusions in resulfurized steels was related to the MnS precipitation temperature.With the increase in MnS precipitation temperature,the critical Te/S weight ratio decreased.In consideration of the cost-effectiveness of Te addition for industrial production,the Te content in resulfurized steels should be controlled in accordance with MnS precipitation temperature and S content.
基金Supported by the self-funded project of Kunming Institute of Physics。
文摘A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.
基金supported by the National Natural Science Foundation of China under Grant Nos.92163211,52002137,51872102,and 51802070the Fundamental Research Funds for the Central Universities under Grant Nos.2021XXJS008 and 2018KFYXKJC002Graduates’Innovation Fund,Huazhong University of Science and Technology under Grant No.2020yjs CXCY022
文摘Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damage in the dynamic service process,resulting in the formation of microcracks and performance degradation.Herein,we prepare a new hybrid hydrogel thermoelectric material PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7)by an in situ polymerization method,which shows a high stretchable and self-healable performance,as well as a good thermoelectric performance.For the sample with Bi_(2)Se_(0.3)Te_(2.7)content of 1.5 wt%(i.e.,PAAc/XG/Bi2Se0.3Te27(1.5 wt%)),which has a room temperature Seebeck coefficient of-0.45 mV K^(-1),and exhibits an open-circuit voltage of-17.91 mV and output power of 38.1 nW at a temperature difference of 40 K.After being completely cut off,the hybrid thermoelectric hydrogel automatically recovers its electrical characteristics within a response time of 2.0 s,and the healed hydrogel remains more than 99%of its initial power output.Such stretchable and self-healable hybrid hydrogel thermoelectric materials show promising potential for application in dynamic service conditions,such as wearable electronics.
文摘A summary of research on the structure of Nb/Ta layered tellurides in the past period is reported. 14 compounds, which have been structurally characterized by X-ray diffraction work, are presented according to their structural features. The first two compounds, Nb2CrTe4 and Nb2Cu1.48Te4, are characterized in that the ternary atoms are inserted in the different layers from the Nb atoms. While in the other compounds, both kinds of metal atoms are inserted in the same layer. The six compounds with formula M2M′2Te4(M = Nb/Ta; M′ = Ni, Co, Fe) are characterized in that their structure can be described as construction by using cluster units 'M2M′2Te10' as building blocks. In the two metal-rich compounds, TaCo2Te2 and TaNi2Te2, Ta atom has a distorted mono-capped pentagonal prism configuration. The structure of TaFeTe3, TaNi2Te3 and NbNi2.34Te3can be described as building by the arrangement of double octahedral chains (DOC). In this connection, a selenide Ta2Ni2Se5 is also included by using the second type of DOC arrangement as the basis to build the structure.
文摘The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.
文摘In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered ternary metal chalcogenide,Eu_(2)InTe_(5).Our results show that Eu_(2)InTe_(5) is a non-zero-gap metal with a layered structure characterized by strong intra-layer atomic bonding and weak inter-layer interaction,which suggests its potential application as a nanomaterial.We also studied the optical properties,including the absorption coefficient,imaginary and real parts of the complex dielectric constant,and found that Eu_(2)InTe_(5) exhibits strong photoresponse characteristics at the junction of ultraviolet and visible light as well as blue-green light,with peaks at wavelengths of 389 nm and 477 nm.This suggests that it could be used in the development of UV(ultraviolet)detectors and other optoelectronic devices.Furthermore,due to its strong absorption,low loss,and low reflectivity,Eu_(2)InTe_(5) has the potential to be used as a promising photovoltaic absorption layer in solar cells.
基金Project supported by the National Natural Science Foundation of China (No. 29493804)the Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
文摘This paper describes the progress on the synthesis of organic selenides and tellurides and their application in organic synthesis. Low dent selenium and telluronium compounds having high reducing selectivity can be used to form carbon-hydrogen bonds an special reducing reagents. Telluronium ylides can react with aldehydes and ketones by Wittig-type condensation to produce (E)-configuration alkenes stereoselectively. α-Phenylselanyl arsonium ylides were prepared by transylidation reaction of arsonium ylides with phenylselanyl halides which can undergo Wittig-type reactions with carbonyl compounds to give (Z)-α-selanyl-α,β-unsaturated compounds with high stereoselectivity. Zirconium, tin, boron, halogen, metal or hetero-atom were introduced in organoselenium and telluronium compounds an new difunctional group reagents. Under transition metal catalysis, the corresponding cross coupling reactions provide new methods of formation of carbon-carbon double bonds, which were used in the stereoselective synthesis of the alkenes.
基金supported through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2022M3H4A1A04096478)the support from the Supercomputing Center of Wuhan University。
文摘Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline HER kinetics.Here,we design ternary transition metals-based nickel telluride(Mo WNi Te)catalysts consisting of high valence non-3d Mo and W metals and oxophilic Te as a first demonstration of non-precious heterogeneous electrocatalysts following the bifunctional mechanism.The Mo WNi Te showed excellent HER catalytic performance with overpotentials of 72,125,and 182 mV to reach the current densities of 10,100,and 1000 mA cm^(-2),respectively,and the corresponding Tafel slope of 47,52,and 58 mV dec-1in alkaline media,which is much superior to commercial Pt/C.Additionally,the HER performance of Mo WNi Te is well maintained up to 3000 h at the current density of 100 mA cm^(-2).It is further demonstrated that the Mo WNi Te exhibits remarkable HER activities with an overpotential of 45 mV(31 mV)and Tafel slope of 60 mV dec-1(34 mV dec-1)at 10 mA cm^(-2)in neutral(acid)media.The superior HER performance of Mo WNi Te is attributed to the electronic structure modulation,inducing highly active low valence states by the incorporation of high valence non-3d transition metals.It is also attributed to the oxophilic effect of Te,accelerating water dissociation kinetics through a bifunctional catalytic mechanism in alkaline media.Density functional theory calculations further reveal that such synergistic effects lead to reduced free energy for an efficient water dissociation process,resulting in remarkable HER catalytic performances within universal pH environments.
基金supported by the National MCF Energy R&D Program of China (2018YFE0306105)the National Key R&D Program of China (2020YFA0406104, 2020YFA0406101)+8 种基金the Innovative Research Group Project of the National Natural Science Foundation of China (51821002)the National Natural Science Foundation of China (52201269, 52302296, 51972216)the Natural Science Foundation of Jiangsu Province (BK20220028, BK20210735)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (21KJB430043)the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Projectthe Suzhou Key Laboratory of Functional Nano & Soft Materials, the Jiangsu Key Laboratory for Advanced Negative Carbon Technologiesthe Science and Technology Development Fund, Macao SAR (0009/2022/ITP)the funding from Gusu leading talent plan for scientific and technological innovation and entrepreneurship (ZXL2022487)China Scholarship Council (CSC) for the Ph.D. fellowship。
文摘It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media.
基金the National Natural Science Foundation of China(Nos.U2032205,52171023,51971238,and 52005492)Natural Science Foundation of Shanghai(Nos.20ZR1468600 and 19ZR1468200)+1 种基金Shanghai Sailing Program(No.19YF1458300)the Youth Innovation Promotion Association,Chinese Academy of Science(No.2019264)。
文摘In this study,pure Ni was demonstrated to protect the GH3535 alloy from Te vapor corrosion because of its strong absorption capacity.Severe Te corrosion of a single GH3535 alloy sample occurred in Te vapor at 700C,which manifested as complex surface corrosion products and deep intergranular cracks.However,when pure Ni and the GH3535 alloy were put together in the vessel,the GH3535 alloy was completely protected from Te corrosion at the expense of the pure Ni.Thermodynamic calculations proved that the preferential reaction between pure Ni and Te vapor reduced the activity of Te vapor considerably,preventing the corrosion of the GH3535 alloy.Our study reveals one potential approach for protecting the alloys used in molten-salt reactors from Te corrosion.
基金supported by the Graduate Teaching Reform Project(JG201922)"Feitian Scholar"Program of Gansu Province+1 种基金CAS"Light of West China"ProgramFoundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘Design of cost-effective,yet highly active electrocatalysts for nitrogen reduction reaction(NRR)is of vital significance for sustainable electrochemical NH_(3) synthesis.Herein,we have demonstrated,from both computational and experimental perspectives,that FeTe_(2) can be an efficient and durable NRR catalyst.Theoretical computations unveil that FeTe_(2) possesses abundant surface-terminated and low-coordinate Fe sites that can activate the NRR with a low limiting potential(-0.84 V)and currently impede the competing hydrogen evolution reaction.As a proof-of-concept prototype,we synthesized FeTe_(2) nanoparticles supported on reduced graphene oxide(FeTe_(2)/RGO),which exhibited a high NRR activity with the exceptional combination of NH_(3) yield(39.2 lg h^(-1) mg^(-1))and Faradaic efficiency(18.1%),thus demonstrating the feasibility of using FeTe_(2) and other earth-abundant metal tellurides for electrocatalytic N_(2) fixation.