With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Es...With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Especially in modern large-scale buildings with high levels of industrialization,lighting systems should also be optimized accordingly.This article explores the application path of intelligent lighting in thermal power plants for reference.展开更多
The continuous development of the power industry has had a positive impact on thermal power plants,helping them maintain a good production form.In the use of steam turbine equipment in thermal power plants,to prolong ...The continuous development of the power industry has had a positive impact on thermal power plants,helping them maintain a good production form.In the use of steam turbine equipment in thermal power plants,to prolong its lifespan and avoid safety hazards,it is necessary to pay attention to strengthening maintenance and construction organization,better implementing effective organizational work,and effectively applying steam turbine equipment to ensure the sustainable development of thermal power plants.This article discusses the concept of equipment maintenance from the perspective of steam turbine equipment in thermal power plants,analyzes the current situation of equipment maintenance,and proposes a specific construction organization to provide a reference for steam turbine equipment maintenance.展开更多
To ensure that the daily production activities of thermal power plants can produce their due effect in the production and business activities,it is necessary to carry out efficient and orderly maintenance work on the ...To ensure that the daily production activities of thermal power plants can produce their due effect in the production and business activities,it is necessary to carry out efficient and orderly maintenance work on the professional equipment of steam engines.However,the maintenance work of steam engine professional equipment in thermal power plants usually uses high-cost expenditures.Therefore,how to take effective measures to reduce the cost of professional equipment maintenance in thermal power plants has become a problem that needs to be solved before such maintenance can proceed.Among them,through the application of economic maintenance equipment in thermal power plants,the actual production and operation costs can be effectively reduced.Based on this,the author will analyze the application of the model of economic maintenance of steam engine professional equipment in thermal power plants.展开更多
A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-coo...A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption.展开更多
This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view...This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view dimension and life period dimension. Hierarchial view includes Management Information System (MIS), SupervisoryInformation System (SIS) and process automation systems such as Distributed Control System (DCS). View dimensionincludes function view, resource view, organization view and information view. Life period view includes system analyses,system design, system implementation, operation maintenance and system optimization.[展开更多
This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power ...This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power industry, and combining the status of power system reform, puts forward some recommendations about reasonably collecting and using SO2 emission charges and prompting power plants to take measures of desulfurization.展开更多
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sint...In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.展开更多
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ...The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.展开更多
Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to a...Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed.展开更多
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
The bromine (Br) and iodine (I) in raw coal, bottom ash (BA) and fly ash (FA) from seven thermal power plants (TPP) digested with pyrohydrolysis were determined by using inductively coupled plasma mass spect...The bromine (Br) and iodine (I) in raw coal, bottom ash (BA) and fly ash (FA) from seven thermal power plants (TPP) digested with pyrohydrolysis were determined by using inductively coupled plasma mass spectrometry (ICP-MS). The distribution behavior of Br and I during coal combustion were researched and the environmental effects of Br and I in BA, FA and gas phase were analyzed. The results show that both elements Br and I in combustion products from TPP are usually pre- sent in decreasing order of the distribution rate as gas phase, FA and BA. In FA and BA, the distribution rate of Br (8.11% and 1.68%, respectively) are generally lower than that of I (9.26% and 4.67%, respectively); on the contrary, in gas phase, the former (90.2%) is higher than the latter (86.9%). In addition, for gas phase, the percentage of Br: (2.0%-75%) in total Br is generally larger than that of I2 (1.0%-10%) in total I. The environmental effects for Br and I emitted into atmosphere from TPP may be larger than those remained and captured by both FA and BA.展开更多
High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials,...High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials, and in-situ synthesis of cordierite was adopted to fabricate thermal storage material for solar thermal power generation via pressureless sintering. The phase compositions, microstructures and thermal shock resistances of the sintered samples were analyzed by XRD, SEM and EDS, and the corresponding mechanical properties were measured. The results show that the major phases of the samples are mullite and zirconium silicate, and the pores distribute uniformly. After being sintered at 1 460℃C, A4 sample exhibits a better mechanical performance and thermal shock resistance, its loss rate of bending strength after 30 cycles thermal shock is 3.04%, the bulk density and bending strength are 2.86 g.cm^-3 and 139.66 MPa, respectively. The better thermal shock resistance of the sample is closely related to the effect of zirconium silicate, such as its uniform distribution, nested growth with mullite, low thermal expansion coefficient, high thermal conductivity, etc. This ceramic can be widely used as one of potential thermal storage materials of solar thermal power generation system.展开更多
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ...In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high.展开更多
Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of th...Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of the thermal pollution in the sea water. The temperature limit for the warm waterdischarge from the thermal power plant has to be monitored and controlled. Coastal Gujarat PowerLimited (CGPL) operates (24×7) at an “once-through system” based sea water circulation for powergeneration. The used sea water is then discharged into the sea through an outlet channel. As per environmental norms, the discharge water temperature needs to be maintained below the stipulated “delta”rise (+7 ℃) with respect to ambient sea surface temperature at the inlet. We demonstrate the applicability of thermal remote sensing data in understanding the seasonal and temporal variations of thetemperature difference between the discharge water and the ambient sea water. We used thermal banddata from Landsat-8 satellite imagery to map water surface temperature and create temperature profilesalong the intake and outflow channels (till the sea), to understand the variation of temperature andestimate the “DT” between intake point and various observation points along the outflow. This analysiswas carried out for all 11 months (except June) of the year 2018 to correlate temperature variations withseasonal changes. Tidal conditions during the time of data acquisition were also considered to accountfor the effect of tides on DT. The result shows that the average temperature rise between intake andoutflow are maintained at ~3 ℃ across all the months of 2018, with minor variations in the months ofJuly and August. Further, average temperature drop from outflow to cooling channel (before diaphragm)is seen to be ~2 ℃ across all the months with similar seasonal fluctuations.展开更多
Through analyzing the proportion of SO2 emission from thermal power plants in the nationwide SO2 emis- sion in USA, Japan etc. developed countries, and the developmental course of thermal power installed capacity and ...Through analyzing the proportion of SO2 emission from thermal power plants in the nationwide SO2 emis- sion in USA, Japan etc. developed countries, and the developmental course of thermal power installed capacity and the FGD capacity in USA, the FGD capacity of thermal power plants in China is forecasted from two angles. One is to predict FGD capacity in accordance with the policy in force in China. The other is to predict FGD capacity based upon the emission right trading policy. As compared, it is held that FGD equipment should be mainly installed on the large size units burning high sulfur coal according to the emission right trading policy. Such a method of work not only can economize large amount of investments and operation costs, but also can realize the same environmental effect.展开更多
To study the physical and chemical properties of aluminosilicate microsphere catalyst by impregnation and calcination us was first obtained aluminosilicate microsphere catalyst U, Nd for petrochemical processes. The m...To study the physical and chemical properties of aluminosilicate microsphere catalyst by impregnation and calcination us was first obtained aluminosilicate microsphere catalyst U, Nd for petrochemical processes. The method of X-ray structure has been studied for the microsphere catalyst U, Nd.展开更多
In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ...In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.展开更多
Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is propos...Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.展开更多
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
文摘With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Especially in modern large-scale buildings with high levels of industrialization,lighting systems should also be optimized accordingly.This article explores the application path of intelligent lighting in thermal power plants for reference.
文摘The continuous development of the power industry has had a positive impact on thermal power plants,helping them maintain a good production form.In the use of steam turbine equipment in thermal power plants,to prolong its lifespan and avoid safety hazards,it is necessary to pay attention to strengthening maintenance and construction organization,better implementing effective organizational work,and effectively applying steam turbine equipment to ensure the sustainable development of thermal power plants.This article discusses the concept of equipment maintenance from the perspective of steam turbine equipment in thermal power plants,analyzes the current situation of equipment maintenance,and proposes a specific construction organization to provide a reference for steam turbine equipment maintenance.
文摘To ensure that the daily production activities of thermal power plants can produce their due effect in the production and business activities,it is necessary to carry out efficient and orderly maintenance work on the professional equipment of steam engines.However,the maintenance work of steam engine professional equipment in thermal power plants usually uses high-cost expenditures.Therefore,how to take effective measures to reduce the cost of professional equipment maintenance in thermal power plants has become a problem that needs to be solved before such maintenance can proceed.Among them,through the application of economic maintenance equipment in thermal power plants,the actual production and operation costs can be effectively reduced.Based on this,the author will analyze the application of the model of economic maintenance of steam engine professional equipment in thermal power plants.
基金supported by the Shandong Natural Science Foundation(Grant No.ZR2022ME008)the Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project(2022TSGC2018)+3 种基金the Shenzhen Science and Technology Program(KCXFZ20201221173409026)The financial supports from the“Young Scholars Program of Shandong University”(YSPSDU,No.2018WLJH73)the Open Project of State Key Laboratory of Clean Energy Utilization,Zhejiang University(Program Number ZJUCEU2020011)the Shandong Natural Science Foundation(Grant No.ZR2021ME118)are gratefully acknowledged。
文摘A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption.
文摘This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view dimension and life period dimension. Hierarchial view includes Management Information System (MIS), SupervisoryInformation System (SIS) and process automation systems such as Distributed Control System (DCS). View dimensionincludes function view, resource view, organization view and information view. Life period view includes system analyses,system design, system implementation, operation maintenance and system optimization.[
文摘This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power industry, and combining the status of power system reform, puts forward some recommendations about reasonably collecting and using SO2 emission charges and prompting power plants to take measures of desulfurization.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2010CB227105)
文摘In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.
文摘The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.
基金Project supported by the National Natural Science Foundation of China(Grant No.51376101)
文摘Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
基金Supported by the National Natural Science Foundation of China (40133010, 40973080)
文摘The bromine (Br) and iodine (I) in raw coal, bottom ash (BA) and fly ash (FA) from seven thermal power plants (TPP) digested with pyrohydrolysis were determined by using inductively coupled plasma mass spectrometry (ICP-MS). The distribution behavior of Br and I during coal combustion were researched and the environmental effects of Br and I in BA, FA and gas phase were analyzed. The results show that both elements Br and I in combustion products from TPP are usually pre- sent in decreasing order of the distribution rate as gas phase, FA and BA. In FA and BA, the distribution rate of Br (8.11% and 1.68%, respectively) are generally lower than that of I (9.26% and 4.67%, respectively); on the contrary, in gas phase, the former (90.2%) is higher than the latter (86.9%). In addition, for gas phase, the percentage of Br: (2.0%-75%) in total Br is generally larger than that of I2 (1.0%-10%) in total I. The environmental effects for Br and I emitted into atmosphere from TPP may be larger than those remained and captured by both FA and BA.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2010CB227105)Self-determined and Innovative Research Funds of WUT(No.44420520001)
文摘High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials, and in-situ synthesis of cordierite was adopted to fabricate thermal storage material for solar thermal power generation via pressureless sintering. The phase compositions, microstructures and thermal shock resistances of the sintered samples were analyzed by XRD, SEM and EDS, and the corresponding mechanical properties were measured. The results show that the major phases of the samples are mullite and zirconium silicate, and the pores distribute uniformly. After being sintered at 1 460℃C, A4 sample exhibits a better mechanical performance and thermal shock resistance, its loss rate of bending strength after 30 cycles thermal shock is 3.04%, the bulk density and bending strength are 2.86 g.cm^-3 and 139.66 MPa, respectively. The better thermal shock resistance of the sample is closely related to the effect of zirconium silicate, such as its uniform distribution, nested growth with mullite, low thermal expansion coefficient, high thermal conductivity, etc. This ceramic can be widely used as one of potential thermal storage materials of solar thermal power generation system.
基金National Natural Science Foundation of China(No.519667013)
文摘In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high.
文摘Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of the thermal pollution in the sea water. The temperature limit for the warm waterdischarge from the thermal power plant has to be monitored and controlled. Coastal Gujarat PowerLimited (CGPL) operates (24×7) at an “once-through system” based sea water circulation for powergeneration. The used sea water is then discharged into the sea through an outlet channel. As per environmental norms, the discharge water temperature needs to be maintained below the stipulated “delta”rise (+7 ℃) with respect to ambient sea surface temperature at the inlet. We demonstrate the applicability of thermal remote sensing data in understanding the seasonal and temporal variations of thetemperature difference between the discharge water and the ambient sea water. We used thermal banddata from Landsat-8 satellite imagery to map water surface temperature and create temperature profilesalong the intake and outflow channels (till the sea), to understand the variation of temperature andestimate the “DT” between intake point and various observation points along the outflow. This analysiswas carried out for all 11 months (except June) of the year 2018 to correlate temperature variations withseasonal changes. Tidal conditions during the time of data acquisition were also considered to accountfor the effect of tides on DT. The result shows that the average temperature rise between intake andoutflow are maintained at ~3 ℃ across all the months of 2018, with minor variations in the months ofJuly and August. Further, average temperature drop from outflow to cooling channel (before diaphragm)is seen to be ~2 ℃ across all the months with similar seasonal fluctuations.
文摘Through analyzing the proportion of SO2 emission from thermal power plants in the nationwide SO2 emis- sion in USA, Japan etc. developed countries, and the developmental course of thermal power installed capacity and the FGD capacity in USA, the FGD capacity of thermal power plants in China is forecasted from two angles. One is to predict FGD capacity in accordance with the policy in force in China. The other is to predict FGD capacity based upon the emission right trading policy. As compared, it is held that FGD equipment should be mainly installed on the large size units burning high sulfur coal according to the emission right trading policy. Such a method of work not only can economize large amount of investments and operation costs, but also can realize the same environmental effect.
文摘To study the physical and chemical properties of aluminosilicate microsphere catalyst by impregnation and calcination us was first obtained aluminosilicate microsphere catalyst U, Nd for petrochemical processes. The method of X-ray structure has been studied for the microsphere catalyst U, Nd.
文摘In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.
文摘Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.