The sapphire (Al2O3) single crystal is a kind of excellent infrared transmission window materials. A large-sized sapphire (Ф225 mm×205 mm, 27.5 kg) was grown by SAPMAC method (sapphire growth technique with...The sapphire (Al2O3) single crystal is a kind of excellent infrared transmission window materials. A large-sized sapphire (Ф225 mm×205 mm, 27.5 kg) was grown by SAPMAC method (sapphire growth technique with micro-pulling and shoulder-expanding at cooled center). Several kinds of inclusion in the large sapphire crystal were investigated by means of an optical microscopy (OM), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The experimental results show that most inclusions are consisted of solid metallic and non-metallic particles as well as gas pores caused by the impurity of alumina as the raw material, the thermal dissociation of aluminum oxide melt and the reaction of the melt to the crucible material (Mo) at high temperatures. It is also found that in different crystal regions the inclusions are of varied sizes, morphology and chemical compositions. Finally, the measures to reduce and eliminate the inclusions are proposed to improve the crystal quality.展开更多
Thin films of VO_(2)single-crystalline on(0001)sapphire substrates have been prepared by visible pulsed laser ablation technique.The crystal quality and properties of the films are evaluated through electrical resista...Thin films of VO_(2)single-crystalline on(0001)sapphire substrates have been prepared by visible pulsed laser ablation technique.The crystal quality and properties of the films are evaluated through electrical resistance measurement,x-ray diffraction(XRD),and Rutherford-backscattering spectroscopy/channeling(RBS/C)analysis.The dependence of the surface electrical resistance of the films on the temperature shows semiconductor-to-metal transitions with the resistance change of 7×10^(3)-2×10^(4).The hysteresis widths are from less than 1 to 3 K.XRD and RBS/C data reveal that the films prepared in particular conditions are single-crystalline VO_(2)with the(010)planes parallel to the surface of the sapphire substrate.展开更多
We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction. We obtain the models of crystal growth parameters influence on the sapphir...We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction. We obtain the models of crystal growth parameters influence on the sapphire crystal growth. For example, these models allow predicting the defects that occur due to local overcooling of crucible walls in the thermal node leading to the accelerated crystal growth. We also develop the prediction models for obtaining the crystal weight, blocks, cracks, bubbles formation, and total defect characteristics. The models were trained on all data sets and later tested for generalization on testing sets, which did not overlap the training set.During training and testing, we find the recall and precision of prediction, and analyze the correlation among the features. The results have shown that the precision of the neural network method for predicting defects formed by local overcooling of the crucible reached 0.94.展开更多
The internal radiative contributed on heat transfer will enhance the heat transport inside the crystalline phase during growth the transparent sapphire crystal using a heat-exchanger-method (HEM). The artificially enh...The internal radiative contributed on heat transfer will enhance the heat transport inside the crystalline phase during growth the transparent sapphire crystal using a heat-exchanger-method (HEM). The artificially enhanced thermal conductivity of the solid to include the internal radiation effect was used in the present study. Numerical simulations using FIDAP were performed to investigate the effects of the thermal conductivity on the shape of the melt-crystal interface, the temperature distribution, and the velocity distribution. Heat transfer (including radiation) from the furnace to the crucible and heat extraction from the heat exchanger can be modeled by the convection boundary conditions. In the present study, we focus on the influence of the conductivity on the shape of the melt-crystal interface. Therefore, the effect of the others growth parameters during the HEM crystal growth was neglected. For the homogenous conductivity (km=kS=k), the maximum convexity decreases as k increases and the rate of maximum convexity increases for a higher conductivity is less abrupt than for a lower conductivity. For the no homogenous conductivity (km≠kS), the higher solid's kS generates lower maximum convexity and the variation in maximum convexity was less abrupt for the different melt's km. The maximum convexity decreases slightly as the enhance conductivity of the sapphire crystal increases. The effects of the anisotropic conductivity of the sapphire crystal were also addressed. The maximum convexity of the melt-crystal interface decreases when the radial conductivity (ksr) of the crystal increases. The maximum convexity increases as the axial conductivity (ksz) of the crucible increases.展开更多
The professional modeling software package CrysVUn was employed to study the process of a large sapphire single crystal growth using Kyropoulos method.The influence of gas pressure on thermal field,solid-liquid interf...The professional modeling software package CrysVUn was employed to study the process of a large sapphire single crystal growth using Kyropoulos method.The influence of gas pressure on thermal field,solid-liquid interface shape,gas velocity field and von Mises stress were studied for the first time.It is found that the root of the seed melt when gas pressure equals to one atmosphere or more than one atmosphere,especially during the seeding period,this result is consistent with the experimental observation,and this paper presents three ways to solve this problem.The temperature gradient and stress decreases significantly as the gas pressure increases.The convexity of the solid-liquid interface slightly increases when the gas pressure increases.Numerical analysis was used to optimize the hot zone design.展开更多
A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium a...A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium alloy under high cyclic loading.Results show that geometrically necessary dislocations(GND)tend to accumulate around the microvoids,leading to an increment of average GND density.The influence of curvature in the tip plastic zone(TPZ)on GND density is greater than that of the size of the microvoid.As the curvature in TPZ and the size of the microvoid increase,the cumulative shear strain(CSS)in the primaryα,secondaryα,andβphases increases.Shear deformation in the prismatic slip system is dominant in the primaryαphase.As the distance between the microvoids increases,the interactive influence of the microvoids on the cumulative shear strain decreases.展开更多
A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The charac...A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The characteristics of the Ti:sapphire l^ser operating in a positive dispersion regime are presented, where the oscillator directly generates pulses with duration continuously tunable from 0.37 ps to 2.11 ps, and 36 fs pulses are achieved atter extracavity compression. The oscillation is numerically simulated with an extended nonlinear Schr6dinger equation, and the simulation results are in good agreement with the experimental results.展开更多
This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source...This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.展开更多
We studied the evolution of wavefront aberration(WFA) of a signal beam during amplification in a Ti:sapphire chirped pulse amplification(CPA) system. The results verified that the WFA of the amplified laser beam has l...We studied the evolution of wavefront aberration(WFA) of a signal beam during amplification in a Ti:sapphire chirped pulse amplification(CPA) system. The results verified that the WFA of the amplified laser beam has little relation with the change of the pump beam energies. Transverse parasitic lasing that might occur in CPA hardly affects the wavefront of the signal beam. Thermal effects were also considered in this study, and the results show that the thermal effect cumulated in multiple amplification processes also has no obvious influence on the wavefront of the signal beam for a single-shot frequency. The results presented in this paper confirmed experimentally that the amplification in a Ti:sapphire CPA system has little impact on the WFA of the signal beam and it is very helpful for wavefront correction of single-shot PW and multi-PW laser systems based on Ti:sapphire.展开更多
A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtai...A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtained. At an incident pump energy of 774mJ, the maximum output energy of 104mJ at 790nm with a pulse width of 100μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.展开更多
The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercool...The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.展开更多
The metallic Zr65Ni25Ti10(mole fraction, %) glass has been fabricated by a single roller melt-spinning method. The glass forming ability(GFA) and thermal stability of the Zr65Ni25Ti10 melt-spun ribbons were invest...The metallic Zr65Ni25Ti10(mole fraction, %) glass has been fabricated by a single roller melt-spinning method. The glass forming ability(GFA) and thermal stability of the Zr65Ni25Ti10 melt-spun ribbons were investigated by using X-ray diffraction(XRD) and differential scanning calorimetry(DSC) in the mode of continuous heating. It is shown that the reduced glass transition temperature (Trg) is 0.506 and the supercooled liquid region (ΔTx) is 30 K. Two exothermic peaks were observed in the DSC curves of the as-quenched ribbon, which indicates that the crystallization process undergoes two different stages. The phase transformation during the isothermal annealing was investigated by X-ray diffraction(XRD) and transmission electronic microscope(TEM). It is observed that the metastable FCC Zr2Ni(Fd3m, a=12.27 ) precipitated while annealing in the suppercooled region(615 K) and the stable BCT Zr2Ni(I4/mcm, a=6.499 , c=5.270 ) precipitated while annealing at higher temperature(673 K or 723 K). The crystallines are on nanoscale, with grain size of 1530 nm. The reason for the precipitation of the different structural Zr2Ni from the glassy matrix under different annealing conditions was discussed based on the concept of multi-component chemical short range order(MCSRO).展开更多
The performance test of a CsI(Tl) crystal (70×27×23 mm3) was performed by applying the pulse shape discrimination technique for identification of light charged particles .The crystal is coupled to a photomul...The performance test of a CsI(Tl) crystal (70×27×23 mm3) was performed by applying the pulse shape discrimination technique for identification of light charged particles .The crystal is coupled to a photomultiplier tube during an experiment with 6He beam.The pulse waveform is fully recorded by employing a high precision digital oscilloscope.The fast and slow gates are used for the pulse shape discrimination and the best values for the gate widths were determined to be 0.5 μs and 1.67 μs,respectively.The 6He,4He and 3He are successfully discriminated with this technique.展开更多
The diameter of Czochralski (Cz) sapphire crystals is 50 mm. The sapphire substrates were lapped by using diamond powders and polished by chemical mechanical polishing(CMP) method using alkali slurry with SiO2 abrasiv...The diameter of Czochralski (Cz) sapphire crystals is 50 mm. The sapphire substrates were lapped by using diamond powders and polished by chemical mechanical polishing(CMP) method using alkali slurry with SiO2 abrasive. After obtaining the smooth surfaces, the chemical etching experiments were processed by using fused KOH and NaOH etchants at different temperature for different times. The dislocation was observed by means of optical microscope and scanning electron microscope. The clear and stable contrast images of sample etching pits were observed. On the whole, the dislocation density is about 104?105 cm?2. Comparing the results under the conditions of different etchants, temperatures and times during the etching proceeding, it was found that the optimal condition for dislocation displaying is etching 15 min with fused KOH at 290 ℃. At the same time, the formation of the etch pits and the reducing method of dislocation density were also discussed.展开更多
We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses a...We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses as short as 17 fs are generated at a central wavelength of 736 nm with an average output power of 31 mW.The maximum output power is 46.8 mW at a central wavelength of 797 nm with a pulse duration of 46 fs.展开更多
The crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) has been redetermined with the single -crystal sample collected from Bayan Obo, Inner Mongolia, China. The chemical formula of the sample is Ce4F...The crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) has been redetermined with the single -crystal sample collected from Bayan Obo, Inner Mongolia, China. The chemical formula of the sample is Ce4Fe2Ti3Si4O22. The crystals are monoclinic with the unit cell parameters a = 13.4656(15) ?, b = 5.7356(6) ?, c = 11.0977(12) ?, β= 100.636(2)o, V = 842.39 (16) ?3 and Z = 2. The structures of Ti- and Fe2+-rich chevkinite-(Ce) were refined with space groups P21/a and C2/m. Least-squares refinement results show that both structural models of Ti- and Fe2+-rich chevkinite-(Ce) are very good, R[F2>2σ(F2)] =0.027 with P21/a and R[F2>2σ(F2)] =0.021 with C2/m. In order to illustrate the relationship between the two space groups P21/a and C2/m, the distribution of diffraction intensities was inspected. Pseudo extinction was found, i.e., reflections with h+k=2n are systematically strong, while those with h+k=2n+1 are weak. By neglecting the systematically weak (h+k=2n+1) reflections the space group becomes C2/m. There is a mirror plane in the C2/m perpendicular to the b axis. However, oxygen atoms in the P21/a model are of a symmetrical relationship with the corresponding pseudo mirror plane. It is concluded that the crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) is a superstructure with the space group of P21/a, which is of pseudo symmetry corresponding to the space group C2/m.展开更多
Crystal tilts in epitaxially laterally overgrown(ELO)GaN films via hydride vapor phase epitaxy(HVPE)on sapphire substrates have been investigated by using four-circle x-ray diffraction method.Three diffraction peaks c...Crystal tilts in epitaxially laterally overgrown(ELO)GaN films via hydride vapor phase epitaxy(HVPE)on sapphire substrates have been investigated by using four-circle x-ray diffraction method.Three diffraction peaks corresponding to the(0002)reflection of vertically epitaxial and tilted GaN domains are observable in the x-ray rocking curve.The angle separationsΔωbetween the main peak and two lobes change with the azimuth angleФ.The dependence ofΔωonФand the crystal tilt angleθhas been calculated based on the standard kinetic x-ray diffraction model.The crystal tilt angle of a typical HVPE ELO GaN sample has been determined to be 2.379℃.展开更多
NaI(TI)探测器是典型的闪烁体辐射探测器,其探测过程涉及辐射能量沉积、可见光信号产生与输运、光电转换与信号处理等物理过程。首先利用蒙特卡罗方法、Birks公式及射线追迹程序,开展了射线粒子在晶体中转为可见光输出过程的计算分析,...NaI(TI)探测器是典型的闪烁体辐射探测器,其探测过程涉及辐射能量沉积、可见光信号产生与输运、光电转换与信号处理等物理过程。首先利用蒙特卡罗方法、Birks公式及射线追迹程序,开展了射线粒子在晶体中转为可见光输出过程的计算分析,并结合光电倍增管和信号处理电路的指标参数进行模拟仿真,得出探测器最终输出的脉冲电压信号参数;然后,在^(137)Cs源辐射场中采用Φ50 mm×50 mm NaI(TI)晶体耦合光电倍增管开展实验验证,实验测得探测器输出脉冲信号的上升/下降时间比为0.39,与模拟计算数值0.36相比,相差约7.69%,表明模拟计算模型的输出结果与实测数据基本符合,初步证明了论文的模拟计算模型及计算分析过程的正确性。论文提出的方法,对于深入理解辐射粒子激发的荧光可见光在晶体闪烁体中的传输规律和闪烁体辐射探测器系统的优化设计,具有一定参考意义。展开更多
基金National Defensive Preliminary Research Funds of China (41312040404)
文摘The sapphire (Al2O3) single crystal is a kind of excellent infrared transmission window materials. A large-sized sapphire (Ф225 mm×205 mm, 27.5 kg) was grown by SAPMAC method (sapphire growth technique with micro-pulling and shoulder-expanding at cooled center). Several kinds of inclusion in the large sapphire crystal were investigated by means of an optical microscopy (OM), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The experimental results show that most inclusions are consisted of solid metallic and non-metallic particles as well as gas pores caused by the impurity of alumina as the raw material, the thermal dissociation of aluminum oxide melt and the reaction of the melt to the crucible material (Mo) at high temperatures. It is also found that in different crystal regions the inclusions are of varied sizes, morphology and chemical compositions. Finally, the measures to reduce and eliminate the inclusions are proposed to improve the crystal quality.
文摘Thin films of VO_(2)single-crystalline on(0001)sapphire substrates have been prepared by visible pulsed laser ablation technique.The crystal quality and properties of the films are evaluated through electrical resistance measurement,x-ray diffraction(XRD),and Rutherford-backscattering spectroscopy/channeling(RBS/C)analysis.The dependence of the surface electrical resistance of the films on the temperature shows semiconductor-to-metal transitions with the resistance change of 7×10^(3)-2×10^(4).The hysteresis widths are from less than 1 to 3 K.XRD and RBS/C data reveal that the films prepared in particular conditions are single-crystalline VO_(2)with the(010)planes parallel to the surface of the sapphire substrate.
基金supported by the Russian Foundation for Basic Research Projects under Grant No.16-52-48016ИНД_оми(R.Kumar and A.V.Filimonov)。
文摘We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction. We obtain the models of crystal growth parameters influence on the sapphire crystal growth. For example, these models allow predicting the defects that occur due to local overcooling of crucible walls in the thermal node leading to the accelerated crystal growth. We also develop the prediction models for obtaining the crystal weight, blocks, cracks, bubbles formation, and total defect characteristics. The models were trained on all data sets and later tested for generalization on testing sets, which did not overlap the training set.During training and testing, we find the recall and precision of prediction, and analyze the correlation among the features. The results have shown that the precision of the neural network method for predicting defects formed by local overcooling of the crucible reached 0.94.
文摘The internal radiative contributed on heat transfer will enhance the heat transport inside the crystalline phase during growth the transparent sapphire crystal using a heat-exchanger-method (HEM). The artificially enhanced thermal conductivity of the solid to include the internal radiation effect was used in the present study. Numerical simulations using FIDAP were performed to investigate the effects of the thermal conductivity on the shape of the melt-crystal interface, the temperature distribution, and the velocity distribution. Heat transfer (including radiation) from the furnace to the crucible and heat extraction from the heat exchanger can be modeled by the convection boundary conditions. In the present study, we focus on the influence of the conductivity on the shape of the melt-crystal interface. Therefore, the effect of the others growth parameters during the HEM crystal growth was neglected. For the homogenous conductivity (km=kS=k), the maximum convexity decreases as k increases and the rate of maximum convexity increases for a higher conductivity is less abrupt than for a lower conductivity. For the no homogenous conductivity (km≠kS), the higher solid's kS generates lower maximum convexity and the variation in maximum convexity was less abrupt for the different melt's km. The maximum convexity decreases slightly as the enhance conductivity of the sapphire crystal increases. The effects of the anisotropic conductivity of the sapphire crystal were also addressed. The maximum convexity of the melt-crystal interface decreases when the radial conductivity (ksr) of the crystal increases. The maximum convexity increases as the axial conductivity (ksz) of the crucible increases.
文摘The professional modeling software package CrysVUn was employed to study the process of a large sapphire single crystal growth using Kyropoulos method.The influence of gas pressure on thermal field,solid-liquid interface shape,gas velocity field and von Mises stress were studied for the first time.It is found that the root of the seed melt when gas pressure equals to one atmosphere or more than one atmosphere,especially during the seeding period,this result is consistent with the experimental observation,and this paper presents three ways to solve this problem.The temperature gradient and stress decreases significantly as the gas pressure increases.The convexity of the solid-liquid interface slightly increases when the gas pressure increases.Numerical analysis was used to optimize the hot zone design.
基金the National Key Research and Development Program of China(No.2021YFB3702603).
文摘A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium alloy under high cyclic loading.Results show that geometrically necessary dislocations(GND)tend to accumulate around the microvoids,leading to an increment of average GND density.The influence of curvature in the tip plastic zone(TPZ)on GND density is greater than that of the size of the microvoid.As the curvature in TPZ and the size of the microvoid increase,the cumulative shear strain(CSS)in the primaryα,secondaryα,andβphases increases.Shear deformation in the prismatic slip system is dominant in the primaryαphase.As the distance between the microvoids increases,the interactive influence of the microvoids on the cumulative shear strain decreases.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806002)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z447)+3 种基金National Natural Science Foundation of China (Grant Nos. 60678012 and 60838004)the Foundation for Key Program of Ministry of Education, China (Grant No. 108032)FANEDD(Grant No. 2007B34)NCET (Grant No. NCET-07-0597)
文摘A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The characteristics of the Ti:sapphire l^ser operating in a positive dispersion regime are presented, where the oscillator directly generates pulses with duration continuously tunable from 0.37 ps to 2.11 ps, and 36 fs pulses are achieved atter extracavity compression. The oscillation is numerically simulated with an extended nonlinear Schr6dinger equation, and the simulation results are in good agreement with the experimental results.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10474071, 60637010, 60671036 and 60278001) and Tianjin Applied Fundamental Research Project, China (07JCZDJC05900).
文摘This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.
基金Project supported by the National Natural Science Foundation of China(Grant No.61775223)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB1603)
文摘We studied the evolution of wavefront aberration(WFA) of a signal beam during amplification in a Ti:sapphire chirped pulse amplification(CPA) system. The results verified that the WFA of the amplified laser beam has little relation with the change of the pump beam energies. Transverse parasitic lasing that might occur in CPA hardly affects the wavefront of the signal beam. Thermal effects were also considered in this study, and the results show that the thermal effect cumulated in multiple amplification processes also has no obvious influence on the wavefront of the signal beam for a single-shot frequency. The results presented in this paper confirmed experimentally that the amplification in a Ti:sapphire CPA system has little impact on the WFA of the signal beam and it is very helpful for wavefront correction of single-shot PW and multi-PW laser systems based on Ti:sapphire.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61275157 and 61475040the National Key Scientific Instrument and Equipment Development,Project under Grant No 2012YQ120048+1 种基金the National Development Project for Major Scientific Research Facility under Grant No ZDYZ2012-2the National Key Research and Development Program of China under Grant No 2016YFB0402003
文摘A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtained. At an incident pump energy of 774mJ, the maximum output energy of 104mJ at 790nm with a pulse width of 100μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.
文摘The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.
文摘The metallic Zr65Ni25Ti10(mole fraction, %) glass has been fabricated by a single roller melt-spinning method. The glass forming ability(GFA) and thermal stability of the Zr65Ni25Ti10 melt-spun ribbons were investigated by using X-ray diffraction(XRD) and differential scanning calorimetry(DSC) in the mode of continuous heating. It is shown that the reduced glass transition temperature (Trg) is 0.506 and the supercooled liquid region (ΔTx) is 30 K. Two exothermic peaks were observed in the DSC curves of the as-quenched ribbon, which indicates that the crystallization process undergoes two different stages. The phase transformation during the isothermal annealing was investigated by X-ray diffraction(XRD) and transmission electronic microscope(TEM). It is observed that the metastable FCC Zr2Ni(Fd3m, a=12.27 ) precipitated while annealing in the suppercooled region(615 K) and the stable BCT Zr2Ni(I4/mcm, a=6.499 , c=5.270 ) precipitated while annealing at higher temperature(673 K or 723 K). The crystallines are on nanoscale, with grain size of 1530 nm. The reason for the precipitation of the different structural Zr2Ni from the glassy matrix under different annealing conditions was discussed based on the concept of multi-component chemical short range order(MCSRO).
基金Supported by National Basic Research Program (973 Program) of China (2007CB815002)NSFC (10775003,10827505)
文摘The performance test of a CsI(Tl) crystal (70×27×23 mm3) was performed by applying the pulse shape discrimination technique for identification of light charged particles .The crystal is coupled to a photomultiplier tube during an experiment with 6He beam.The pulse waveform is fully recorded by employing a high precision digital oscilloscope.The fast and slow gates are used for the pulse shape discrimination and the best values for the gate widths were determined to be 0.5 μs and 1.67 μs,respectively.The 6He,4He and 3He are successfully discriminated with this technique.
基金Project(59772037) supported by the National Natural Science Foundation of China project(500016) supported by the Hebei Natural Science Foundation Project(20050080007) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The diameter of Czochralski (Cz) sapphire crystals is 50 mm. The sapphire substrates were lapped by using diamond powders and polished by chemical mechanical polishing(CMP) method using alkali slurry with SiO2 abrasive. After obtaining the smooth surfaces, the chemical etching experiments were processed by using fused KOH and NaOH etchants at different temperature for different times. The dislocation was observed by means of optical microscope and scanning electron microscope. The clear and stable contrast images of sample etching pits were observed. On the whole, the dislocation density is about 104?105 cm?2. Comparing the results under the conditions of different etchants, temperatures and times during the etching proceeding, it was found that the optimal condition for dislocation displaying is etching 15 min with fused KOH at 290 ℃. At the same time, the formation of the etch pits and the reducing method of dislocation density were also discussed.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0402105)
文摘We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses as short as 17 fs are generated at a central wavelength of 736 nm with an average output power of 31 mW.The maximum output power is 46.8 mW at a central wavelength of 797 nm with a pulse duration of 46 fs.
基金supported by the National Natural Science Foundation of China(Grant 40472030)
文摘The crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) has been redetermined with the single -crystal sample collected from Bayan Obo, Inner Mongolia, China. The chemical formula of the sample is Ce4Fe2Ti3Si4O22. The crystals are monoclinic with the unit cell parameters a = 13.4656(15) ?, b = 5.7356(6) ?, c = 11.0977(12) ?, β= 100.636(2)o, V = 842.39 (16) ?3 and Z = 2. The structures of Ti- and Fe2+-rich chevkinite-(Ce) were refined with space groups P21/a and C2/m. Least-squares refinement results show that both structural models of Ti- and Fe2+-rich chevkinite-(Ce) are very good, R[F2>2σ(F2)] =0.027 with P21/a and R[F2>2σ(F2)] =0.021 with C2/m. In order to illustrate the relationship between the two space groups P21/a and C2/m, the distribution of diffraction intensities was inspected. Pseudo extinction was found, i.e., reflections with h+k=2n are systematically strong, while those with h+k=2n+1 are weak. By neglecting the systematically weak (h+k=2n+1) reflections the space group becomes C2/m. There is a mirror plane in the C2/m perpendicular to the b axis. However, oxygen atoms in the P21/a model are of a symmetrical relationship with the corresponding pseudo mirror plane. It is concluded that the crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) is a superstructure with the space group of P21/a, which is of pseudo symmetry corresponding to the space group C2/m.
基金Supported by the special fund for Major State Basic Research Projects(#G20000683)the National Science Fund for Distinguished Young Scholars(#60025411)+1 种基金the National Natural Science Foundation of China under Grant Nos.69976014,69636010,69806006 and 69987001the National High Technology Research&Development Project of China.
文摘Crystal tilts in epitaxially laterally overgrown(ELO)GaN films via hydride vapor phase epitaxy(HVPE)on sapphire substrates have been investigated by using four-circle x-ray diffraction method.Three diffraction peaks corresponding to the(0002)reflection of vertically epitaxial and tilted GaN domains are observable in the x-ray rocking curve.The angle separationsΔωbetween the main peak and two lobes change with the azimuth angleФ.The dependence ofΔωonФand the crystal tilt angleθhas been calculated based on the standard kinetic x-ray diffraction model.The crystal tilt angle of a typical HVPE ELO GaN sample has been determined to be 2.379℃.
文摘NaI(TI)探测器是典型的闪烁体辐射探测器,其探测过程涉及辐射能量沉积、可见光信号产生与输运、光电转换与信号处理等物理过程。首先利用蒙特卡罗方法、Birks公式及射线追迹程序,开展了射线粒子在晶体中转为可见光输出过程的计算分析,并结合光电倍增管和信号处理电路的指标参数进行模拟仿真,得出探测器最终输出的脉冲电压信号参数;然后,在^(137)Cs源辐射场中采用Φ50 mm×50 mm NaI(TI)晶体耦合光电倍增管开展实验验证,实验测得探测器输出脉冲信号的上升/下降时间比为0.39,与模拟计算数值0.36相比,相差约7.69%,表明模拟计算模型的输出结果与实测数据基本符合,初步证明了论文的模拟计算模型及计算分析过程的正确性。论文提出的方法,对于深入理解辐射粒子激发的荧光可见光在晶体闪烁体中的传输规律和闪烁体辐射探测器系统的优化设计,具有一定参考意义。