A series of copper-doped Ti-Ce-O_x complex oxide catalysts were synthesized by sol-gel method and evaluated for selective catalytic reduction of NO by NH_3 at low temperature. The promotional effect of copper doping o...A series of copper-doped Ti-Ce-O_x complex oxide catalysts were synthesized by sol-gel method and evaluated for selective catalytic reduction of NO by NH_3 at low temperature. The promotional effect of copper doping on their structure, acidity and catalytic activity were investigated by means of Brumauer-Emmett-Teller(BET), temperature-programmed reduction(H_2-TPR), X-ray diffraction(XRD), scanning electron microscopy(SEM), temperature programmed desorption(NH_3-TPD) and pyridine adsorption infrared spectrum(Py-IR) technologies. Results showed that the copper additives could improve the low temperature catalytic performance for selective catalytic reduction of Ti-Ce-O_x catalyst and the NO conversion efficiency of Ti-Cu-Ce-O_x catalyst reached above 90% at 150-250 oC(Ti/Cu=4). The introduction of copper could enhance the redox property of the Ti-Ce-O_x complex oxide catalyst, refine the particle size caused by lattice distortion and oxygen vacancy defect and enhance the acid amount of the Lewis acid site. Moreover, Ti-Cu-Ce-O_x complex oxide catalyst also had good anti-sulfur ability and anti-water influence, when injecting 300 ppm SO_2 and 10 vol.%H_2O, the NO conversion efficiency of Ti-Cu-Ce-O_x catalyst reached 80%.展开更多
基金supported by the National Natural Science Foundation of China(51272105)the National Key Technology R&D Program of China(2012BAE01B03)+1 种基金the Research Subject of Environmental Protection Department of Jiangsu Province of China(2013006)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of copper-doped Ti-Ce-O_x complex oxide catalysts were synthesized by sol-gel method and evaluated for selective catalytic reduction of NO by NH_3 at low temperature. The promotional effect of copper doping on their structure, acidity and catalytic activity were investigated by means of Brumauer-Emmett-Teller(BET), temperature-programmed reduction(H_2-TPR), X-ray diffraction(XRD), scanning electron microscopy(SEM), temperature programmed desorption(NH_3-TPD) and pyridine adsorption infrared spectrum(Py-IR) technologies. Results showed that the copper additives could improve the low temperature catalytic performance for selective catalytic reduction of Ti-Ce-O_x catalyst and the NO conversion efficiency of Ti-Cu-Ce-O_x catalyst reached above 90% at 150-250 oC(Ti/Cu=4). The introduction of copper could enhance the redox property of the Ti-Ce-O_x complex oxide catalyst, refine the particle size caused by lattice distortion and oxygen vacancy defect and enhance the acid amount of the Lewis acid site. Moreover, Ti-Cu-Ce-O_x complex oxide catalyst also had good anti-sulfur ability and anti-water influence, when injecting 300 ppm SO_2 and 10 vol.%H_2O, the NO conversion efficiency of Ti-Cu-Ce-O_x catalyst reached 80%.