TiO2/EDTA-rich carbon composites (TiO2/EDTA-RC) have been successfully synthesized via a low temperature carbonization process. TiO2/EDTA-RC exhibits marked absorption of visible light and excellent photoreduction o...TiO2/EDTA-rich carbon composites (TiO2/EDTA-RC) have been successfully synthesized via a low temperature carbonization process. TiO2/EDTA-RC exhibits marked absorption of visible light and excellent photoreduction of Cr(Ⅵ) activity under visible light irradiation (λ 〉 420 nm). Due to the high carboxyl group content and strong coordination ability of EDTA, TiO2-EDTA complex can be easily fabricated between EDTA incorporated in carbon sheet and titanol group on the surface of TiO2. TiO2- EDTA complexes on the surface of TiO2/EDTA-RC, the LMCT complex, are responsible for the prominent photoreduction of Cr(Ⅵ) properties of TiO2/EDTA-RC under visible light irradiation. In addition, the unique structure of TiO2/EDTA-RC is also propitious to the visible-light photocatalytic reduction of Cr(Ⅵ). Carbon sheet of TiO2/EDTA-RC acts as a supporter. Tio2 nanoparticles and EDTA homogeneously disperse into the carbon sheet supporter and form the TiO2-EDTA complexes, which can avoid the aggregation of TiO2 nanoparticles in the aqueous solution and provide more photocatalytic reaction points for the reduction of Cr(Ⅵ).展开更多
基金financially supported by the Natural Science Foundation of Jiangsu Province(No. BK20130485),(No. BK20130485)Highly Qualified Professional Initial Funding of Jiangsu University(No. 10JDG120)Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment
文摘TiO2/EDTA-rich carbon composites (TiO2/EDTA-RC) have been successfully synthesized via a low temperature carbonization process. TiO2/EDTA-RC exhibits marked absorption of visible light and excellent photoreduction of Cr(Ⅵ) activity under visible light irradiation (λ 〉 420 nm). Due to the high carboxyl group content and strong coordination ability of EDTA, TiO2-EDTA complex can be easily fabricated between EDTA incorporated in carbon sheet and titanol group on the surface of TiO2. TiO2- EDTA complexes on the surface of TiO2/EDTA-RC, the LMCT complex, are responsible for the prominent photoreduction of Cr(Ⅵ) properties of TiO2/EDTA-RC under visible light irradiation. In addition, the unique structure of TiO2/EDTA-RC is also propitious to the visible-light photocatalytic reduction of Cr(Ⅵ). Carbon sheet of TiO2/EDTA-RC acts as a supporter. Tio2 nanoparticles and EDTA homogeneously disperse into the carbon sheet supporter and form the TiO2-EDTA complexes, which can avoid the aggregation of TiO2 nanoparticles in the aqueous solution and provide more photocatalytic reaction points for the reduction of Cr(Ⅵ).