期刊文献+
共找到19,446篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism of Diabatic Heating on Precipitation and the Track of a Tibetan Plateau Vortex over the Eastern Slope of the Tibetan Plateau
1
作者 Yuanchang DONG Guoping LI +3 位作者 Xiaolin XIE Long YANG Peiwen ZHANG Bo ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期155-172,共18页
Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How... Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP. 展开更多
关键词 eastern slope of the tibetan Plateau diabatic heating tibetan Plateau vortex precipitation distribution TRACK
下载PDF
Convection-Permitting Simulations of Current and Future Climates over the Tibetan Plateau 被引量:1
2
作者 Liwei ZOU Tianjun ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期1901-1916,共16页
The Tibetan Plateau(TP)region,also known as the“Asian water tower”,provides a vital water resource for downstream regions.Previous studies of water cycle changes over the TP have been conducted with climate models o... The Tibetan Plateau(TP)region,also known as the“Asian water tower”,provides a vital water resource for downstream regions.Previous studies of water cycle changes over the TP have been conducted with climate models of coarse resolution in which deep convection must be parameterized.In this study,we present results from a first set of highresolution climate change simulations that permit convection at approximately 3.3-km grid spacing,with a focus on the TP,using the Icosahedral Nonhydrostatic Weather and Climate Model(ICON).Two 12-year simulations were performed,consisting of a retrospective simulation(2008–20)with initial and boundary conditions from ERA5 reanalysis and a pseudoglobal warming projection driven by modified reanalysis-derived initial and boundary conditions by adding the monthly CMIP6 ensemble-mean climate change under the SSP5-8.5 scenario.The retrospective simulation shows overall good performance in capturing the seasonal precipitation and surface air temperature.Over the central and eastern TP,the average biases in precipitation(temperature)are less than−0.34 mm d−1(−1.1℃)throughout the year.The simulated biases over the TP are height-dependent.Cold(wet)biases are found in summer(winter)above 5500 m.The future climate simulation suggests that the TP will be wetter and warmer under the SSP5-8.5 scenario.The general features of projected changes in ICON are comparable to the CMIP6 ensemble projection,but the added value from kilometer-scale modeling is evident in both precipitation and temperature projections over complex topographic regions.These ICON-downscaled climate change simulations provide a high-resolution dataset to the community for the study of regional climate changes and impacts over the TP. 展开更多
关键词 dynamical downscaling convection-permitting tibetan Plateau pseudo-global warming
下载PDF
Multiple Uplift and Exhumation of the Southeastern Tibetan Plateau:Evidence from Low-Temperature Thermochronology 被引量:1
3
作者 WU Limin PENG Touping +6 位作者 FAN Weiming ZHAO Guochun GAO Jianfeng DONG Xiaohan PENG Shili MIN Kang Tin Aung MYINT 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期569-584,共16页
Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat... Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate. 展开更多
关键词 apatite fission track rapid cooling differential uplift MAGMATISM southeastern tibetan Plateau
下载PDF
Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020:Role of Soil Moisture 被引量:1
4
作者 Yizhe HAN Dabang JIANG +2 位作者 Dong SI Yaoming MA Weiqiang MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1527-1538,共12页
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N... The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC. 展开更多
关键词 tibetan Plateau atmospheric heat source Northeast China summer precipitation soil moisture
下载PDF
Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020 被引量:1
5
作者 Jinglong Huang Chaofan Li +2 位作者 Binghao Jia Chujie Gao Ruichao Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期34-39,共6页
The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Uti... The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming. 展开更多
关键词 Active layer thickness PERMAFROST tibetan plateau Climatological characteristics
下载PDF
Projected changes in extreme snowfall events over the Tibetan Plateau based on a set of RCM simulations 被引量:1
6
作者 Yuanhai Fu Xuejie Gao 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期3-9,共7页
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr... Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas. 展开更多
关键词 Extreme snowfall Regional climate model tibetan plateau Climate change
下载PDF
Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020 被引量:1
7
作者 Ying Na Chaofan Li Riyu Lu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期16-21,共6页
The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than m... The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region. 展开更多
关键词 Isolated deep convection tibetan plateau Climatological characteristics Precipitation contribution Extreme precipitation
下载PDF
Future changes in precipitation and water availability over the Tibetan Plateau projected by CMIP6 models constrained by climate sensitivity 被引量:1
8
作者 Hui Qiu Tianjun Zhou +3 位作者 Liwei Zou Jie Jiang Xiaolong Chen Shuai Hu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期40-46,共7页
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse... Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes. 展开更多
关键词 tibetan plateau Climate sensitivity Precipitation projection Water availability projection
下载PDF
Deep tectonics and seismogenic mechanisms of the seismic source zone of the Jishishan M_(s)6.2 earthquake on December 18,2023,at the northeast margin of the Tibetan Plateau 被引量:1
9
作者 Qiong Wang ShuYu Li +3 位作者 XinYi Li Yue Wu PanPan Zhao Yuan Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期514-521,共8页
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t... On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault. 展开更多
关键词 Jishishan M_(s)6.2 earthquake crustal structure anisotropy stress and strain seismogenic mechanism northeast margin of the tibetan Plateau
下载PDF
Westerlies Affecting the Seasonal Variation of Water Vapor Transport over the Tibetan Plateau Induced by Tropical Cyclones in the Bay of Bengal
10
作者 Xiaoli ZHOU Wen ZHOU +3 位作者 Dongxiao WANG Qiang XIE Lei YANG Qihua PENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期881-893,共13页
This study investigates the activity of tropical cyclones(TCs)in the Bay of Bengal(BOB)from 1979 to 2018 to discover the mechanism affecting the contribution rate to the meridional moisture budget anomaly(MMBA)over th... This study investigates the activity of tropical cyclones(TCs)in the Bay of Bengal(BOB)from 1979 to 2018 to discover the mechanism affecting the contribution rate to the meridional moisture budget anomaly(MMBA)over the southern boundary of the Tibetan Plateau(SBTP).May and October–December are the bimodal phases of BOB TC frequency,which decreases month by month from October to December and is relatively low in May.However,the contribution rate to the MMBA is the highest in May.The seasonal variation in the meridional position of the westerlies is the key factor affecting the contribution rate.The relatively southern(northern)position of the westerlies in November and December(May)results in a lower(higher)contribution rate to the MMBA.This mechanism is confirmed by the momentum equation.When water vapor enters the westerlies near the trough line,the resultant meridional acceleration is directed north.It follows that the farther north the trough is,and the farther north the water vapor can be transported.When water vapor enters the westerlies from the area near the ridge line,for Type-T(Type-R)TCs,water vapor enters the westerlies downstream of the trough(ridge).Consequently,the direction of the resultant meridional acceleration is directed south and the resultant zonal acceleration is directed east(west),which is not conducive to the northward transport of water vapor.This is especially the case if the trough or ridge is relatively south,as the water vapor may not cross the SBTP. 展开更多
关键词 tropical cyclone tibetan Plateau Bay of Bengal moisture budget weste
下载PDF
Changes in Spring Snow Cover over the Eastern and Western Tibetan Plateau and Their Associated Mechanism
11
作者 Fangchi LIU Xiaojing JIA Wei DONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期959-973,共15页
The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigate... The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP. 展开更多
关键词 snow cover tibetan Plateau long-term changes SPRING
下载PDF
A New Algorithm of Rain Type Classification for GPM Dual-Frequency Precipitation Radar in Summer Tibetan Plateau
12
作者 Yunfei FU Liu YANG +4 位作者 Zhenhao WU Peng ZHANG Songyan GU Lin CHEN Sun NAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2093-2111,共19页
In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2... In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%). 展开更多
关键词 satellite precipitation radar rain type classification method tibetan Plateau strong convective precipitation
下载PDF
Emerging glacier forelands alter carbon dynamics on the Tibetan Plateau
13
作者 GAO Tanguang ZHANG Yulan MEADOWS Michael Edward 《Journal of Mountain Science》 SCIE CSCD 2024年第9期2871-2875,共5页
The critical challenge of ongoing climate warming is resulting in glacier melting globally,a process accompanied by the formation of substantial glacier forelands.This phenomenon emerges as a pivotal area of study,esp... The critical challenge of ongoing climate warming is resulting in glacier melting globally,a process accompanied by the formation of substantial glacier forelands.This phenomenon emerges as a pivotal area of study,especially in the Tibetan Plateau(TP),known as the Third Pole and the Asian Water Tower.In particular,the rapid retreat of temperate glaciers in the southeastern TP has led to the formation of expansive glacier forelands.These forelands are not merely evidence of climate shifts but are also key areas for transformative carbon dynamics.Moreover,the newly exposed land surface actively adjusts the balance of dissolved organic carbon,especially in meltwater,and influences the release of greenhouse gases from a range of sources including glacial lakes,subglacial sediments,and supraglacial/proglacial rivers.These processes play a crucial role in the dynamics of atmospheric carbon dioxide.Drawing from our intensive and detailed observations over several years,this perspective not only emphasizes the importance of the underexplored impact of glacier forelands on carbon cycles but also opens a window into understanding potential future trajectories in a warming world. 展开更多
关键词 GLACIER Climate warming Carbon release tibetan Plateau
原文传递
Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau
14
作者 Shuo JIA Jiefan YANG Hengchi LEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期97-114,共18页
Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polari... Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polarization radar.The time-height series of radar physical variables and mesoscale horizontal divergence δderived by quasi-vertical profiles(QVPs)indicated that the dendritic growth layer(DGL,-20°C to-10°C)was ubiquitous,with large-value zones of K_(DP)(specific differential phase),Z_(DR)(differential reflectivity),or both,and corresponded to various dynamic fields(ascent or descent).Ascents in the DGL of cloud systems with vigorous vertical development were coincident with large-value zones of Z_(DR),signifying ice crystals with a large axis ratio,but with no obvious large values of K_(DP),which differs from previous findings.It is speculated that ascent in the DGL promoted ice crystals to undergo further growth before sinking.If there was descent in the DGL,a high echo top corresponded to large values of K_(DP),denoting a large number concentration of ice crystals;but with the echo top descending,small values of K_(DP) formed.This is similar to previous results and reveals that a high echo top is conducive to the generation of ice crystals.When ice particles fall to low levels(-10℃ to 0℃),they grow through riming,aggregation,or deposition,and may not be related to the kinematic structure.It is important to note that this study was only based on a limited number of cases and that further research is therefore needed. 展开更多
关键词 tibetan Plateau polarimetric variables MICROPHYSICS dendritic growth layer kinematic structure aggregation RIMING
下载PDF
Quantifying freeze-melt dynamics of lakes on the Tibetan Plateau using Sentinel-1 synthetic aperture radar imagery
15
作者 JIN Lu CHEN Jun +3 位作者 CAI Yu KONG Yecheng WANG Yongfeng DUAN Zheng 《Journal of Mountain Science》 SCIE CSCD 2024年第3期805-819,共15页
The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave... The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave data are widely used to monitor lake ice changes with high temporal resolution.However,the low spatial resolutions make it difficult to effectively quantify the freeze-melt dynamics of lakes.This work used Sentinel-1 synthetic aperture radar(SAR)data to derive high-resolution ice maps(about 6 days),then with the aid of Sentinel-2 optical images to quantify freeze-melt processes in three typical lakes on the TP(e.g.Selin Co,Ayakekumu Lake,and Nam Co).The results showed that three lakes had an average annual ice period of 125-157 days and a complete ice cover period of 72-115 days,from 2018 to 2022.They exhibit different ice phenology patterns.Nam Co is characterized by repeated episodes of freezing,melting,and refreezing,resulting in a prolonged freeze-up period.Meanwhile,the break-up period of Nam Co lasts for a longer duration(about 19 days),and the break-up exhibits a smooth process.Similarly,Ayakekumu Lake showed more significant inter-annual fluctuations in the freeze-up period,with deviations of up to 28 days observed among different years.Compared to the other two lakes,Selin Co experienced a relatively short freeze-up and break-up period.In short,Sentinel-1 SAR data can effectively monitor the weekly and seasonal variations in lake ice on the TP.Particularly,this data facilitates quantification of the freeze-melt dynamics. 展开更多
关键词 Lake ice Sentinel-1 SAR tibetan Plateau Climate change
原文传递
Principle of Hydrogen Isotope Geochemistry Paleo-altimeter and its Potential in Reconstructing Paleo-elevation of the Southeastern Tibetan Plateau
16
作者 CUI Fengzhen LIU-ZENG Jing +4 位作者 LI Yunshuai XU Qiang TANG Maoyun WANG Heng SUN Zhaotong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期1051-1063,共13页
The reconstruction of paleo-elevation serves a dual purpose to enhance our comprehension of geodynamic processes affecting terrestrial landforms and to contribute significantly to the interpretation of atmospheric cir... The reconstruction of paleo-elevation serves a dual purpose to enhance our comprehension of geodynamic processes affecting terrestrial landforms and to contribute significantly to the interpretation of atmospheric circulation and biodiversity.The oxygen(δ~(18)O_w)and deuterium(δD_w)isotopes in atmospheric precipitation are systematically depleted with the increase of altitude,which are typical and widely applicated paleo-altimeters.The utilization of hydrogen isotope of hydrous silicate minerals within the shear zone system,volcanic glass,and plant leaf wax alkanes offers valuable insights for addressing evaporation and diagenesis.In this paper,we review the principle,application conditions,and influencing factors of the hydrogen isotope paleo-altimeter.In addition,we discuss the feasibility of utilizing this technique for quantitatively estimating the paleo-elevation of the southeastern Tibetan Plateau,where multiple shear zones extend over hundred kilometers parallel to the topographic gradient. 展开更多
关键词 paleo-elevation hydrogen isotope hydrous silicate minerals volcanic glass tibetan Plateau
下载PDF
Occurrence of microplastics in natural and farmland soil in the Qilian Mountains of the Northern Tibetan Plateau
17
作者 KANG Qiangqiang ZHANG Yulan +5 位作者 KANG Shichang ZHANG Shengyin LUO Xi LI Longrui WANG Zhaoqing ZHANG Shuncun 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2159-2172,共14页
Microplastics(MPs)become ubiquitous in soil and are an environmental and public health concern worldwide.However,the status of MPs in natural and farmland soils in remote areas remains poorly understood.In this study,... Microplastics(MPs)become ubiquitous in soil and are an environmental and public health concern worldwide.However,the status of MPs in natural and farmland soils in remote areas remains poorly understood.In this study,we investigated the characteristics of MPs in natural and farmland soils along two transects in the Qilian Mountains of the northern Tibetan Plateau.The average abundance of MPs in natural and farmland soils was 29,778 and 56,123 items kg^(-1),respectively,with a detection size range of 10-1000μm.MPs in the size range of 10-100μm accounted for 84.1%of particles detected.Among the 21 polymers detected,polyethylene dominated in both farmland and natural soils.The shape of MPs was dominated by fragments(95.8%),followed by fibers(3.8%)and beads(0.4%).The abundance of MPs was positively correlated with increasing altitude in natural soils.There was no significant correlation between the abundance of MPs and soil physicochemical properties due to the narrow range of values of soil physicochemical properties.With the growing concern regarding MPs pollution,research on the status of MPs in high altitude and remote areas is critical to understanding their global cycle. 展开更多
关键词 Microplastics pollution SOIL Remote areas tibetan Plateau
原文传递
April-September minimum temperature reconstruction based on Sabina tibetica ring-width chronology in the central eastern Tibetan Plateau,China
18
作者 Teng Li Jianfeng Peng +1 位作者 Tsun Fung Au Jinbao Li 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期134-145,共12页
Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau,but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimu... Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau,but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimum temperature anomalies.In this study,a warm season(April–September)reconstruction is presented for the past 467 years(1550–2016)based on Sabina tibetica ring-width chronology on the Lianbaoyeze Mountain of the central eastern Tibetan Plateau.Eight warm periods and eight cold periods were identified.Long-term minimum temperature variations revealed a high degree of coherence with nearby reconstructions.Spatial correlations between our reconstruction and global sea surface temperatures suggest that warm season minimum temperature anomalies in the central eastern Tibetan Plateau were strongly influenced by large-scale ocean atmospheric circulations,such as the El Ni?o-Southern Oscillation and the Atlantic Multidecadal Oscillation. 展开更多
关键词 Tree-ring analysis Sabina tibetica Minimum temperatures Central eastern tibetan Plateau Climate change
下载PDF
A Study on the Assessment and Integration of Multi-Source Evapotranspiration Products over the Tibetan Plateau
19
作者 Ming CHENG Lei ZHONG +6 位作者 Yaoming MA Han MA Yaoxin CHANG Peizhen LI Meilin CHENG Xian WANG Nan GE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期435-448,共14页
Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in th... Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in the evaluation and integration of ET products in remote and complex areas such as the Tibetan Plateau(TP).In this paper,the applicability of the multiple collocation(MC)method over the TP is evaluated for the first time,and the uncertainty of multisource ET products(based on reanalysis,remote sensing,and land surface models)is further analyzed,which provides a theoretical basis for ET data fusion.The results show that 1)ET uncertainties quantified via the MC method are lower in RS-based ET products(5.95 vs.7.06 mm month^(-1))than in LSM ET products(10.22 vs.17.97 mm month^(-1))and reanalysis ET estimates(7.27 vs.12.26 mm month-1).2)A multisource evapotranspiration(MET)dataset is generated at a monthly temporal scale with a spatial resolution of 0.25°across the TP during 2005-15.MET has better performance than any individual product.3)Based on the fusion product,the total ET amount over the TP and its patterns of spatiotemporal variability are clearly identified.The annual total ET over the entire TP is approximately 380.60 mm.Additionally,an increasing trend of 1.59±0.85 mm yr^(-1)over the TP is shown during 2005-15.This study provides a basis for future studies on water and energy cycles and water resource management over the TP and surrounding regions. 展开更多
关键词 EVAPOTRANSPIRATION data fusion multiple collocation the tibetan Plateau
下载PDF
Advances in ice avalanches on the Tibetan Plateau
20
作者 TANG Minggao LI Guang +4 位作者 ZHAO Huanle XU Qiang WU Guangjian YANG Wei GUO Daojing 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1814-1829,共16页
As some of the greatest natural disasters in the cryosphere,ice avalanches(IAs)seriously threaten lives and cause catastrophic damage to the resource environment,but a comprehensive overview of the state of knowledge ... As some of the greatest natural disasters in the cryosphere,ice avalanches(IAs)seriously threaten lives and cause catastrophic damage to the resource environment,but a comprehensive overview of the state of knowledge on IAs remains lacking.We summarized 63 IAs on the Tibetan Plateau(TP)since the 20th century,of which,over 20 IAs occurred after the 21st century.The distributions of IAs are mainly concentrated in the southeastern and northwestern TP,and the occurrence time of IAs is mostly concentrated from July to September.We highlight recent advances in mechanical properties and genetic mechanisms of IAs and emphasize that temperature,rainfall,and seismicity are the inducing factors.The failure modes of IAs are summarized into 6 categories by examples:slip pulling type,slip toppling type,slip breaking type,water level collapse type,cave roof collapse type,and wedge failure type.Finally,we deliver recommendations concerning the risk assessment and prediction of IAs.The results provide important scientific value for addressing climate change and resisting glacier-related hazards. 展开更多
关键词 Ice avalanche Global warming Genetic mechanism Risk assessment tibetan Plateau
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部