Electronic properties, such as HOMO and LUMO energies, band gaps, ionization potential (IP) and electron affinity (EA) of 2,7- and 3,6-1inked carbazole trimers, two conjugated oligomcrs with different linkages of ...Electronic properties, such as HOMO and LUMO energies, band gaps, ionization potential (IP) and electron affinity (EA) of 2,7- and 3,6-1inked carbazole trimers, two conjugated oligomcrs with different linkages of carbazole, were studicd by the density functional theory with Becke-Lee-Young-Parr composite exchange correlation functional (B3LYP). The absorption spectra of these compounds were also investigated by time-dependent density functional theory (TD-DFT) with 6-3 IG* basis set. The calculated results indicated that the HOMO and LUMO of the 2,7- and 3,6-1inked carbazole trimers are both slightly destabilized on going from methyl substitution to sec-butyl substitution. Both IP and EA exhibit their good hole-transporting but poor electronaccepting ability. The presence of alkyl groups on the nitrogen atoms does not affect the intra-chain electronic delocalization along the molecular frame. Thus no significant effect on the band gap and absorption spectra of compounds has been found.展开更多
We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time- dependent density functional theory. The dipole responses are investigated each as a function of chain length...We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time- dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on.展开更多
By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts ...By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts to leave the Cl atom and is reflected by the C60 wall. The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H-Cl bond axis are investigated. The radial oscillation is also found in the two polarization directions of the laser pulse. The relaxation time of the H-Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization. Those results are important for studying the dynamics of the chemical bond at an atomic level.展开更多
The study of various oxidation states of chromium with Sargassum <i>sp</i>. is of particular interest since hexavalent chromium </span><span style="font-size:10.0pt;font-family:""&g...The study of various oxidation states of chromium with Sargassum <i>sp</i>. is of particular interest since hexavalent chromium </span><span style="font-size:10.0pt;font-family:"">is </span><span style="font-size:10.0pt;font-family:"">reduced to trivalent chromium in </span><span style="font-size:10.0pt;font-family:"">an </span><span style="font-size:10.0pt;font-family:"">aqueous solution. In this study, a systematic density functional theory (DFT) calculations were performed to study the interactions of transition metal chromium ion with different oxidation states and spin states with the <i>Sar</i></span><i><span style="font-size:10.0pt;font-family:"">gassum sp</span></i><span style="font-size:10.0pt;font-family:"">. decorated with carboxylate</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">(acetate) at the wB97XD/6-311++</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">G(d,p)</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">level of theory. The structures and binding energies of chromium met<span>al</span></span><span style="font-size:10.0pt;font-family:"">-</span><span style="font-size:10.0pt;font-family:"">carboxylate complexes at various oxidation states and spin states in gas</span><span style="font-size:10.0pt;font-family:""> phase were examined. The coordination strength of Cr(VI) with the acetate <span>ligand was predominantly the strongest compare</span></span><span style="font-size:10.0pt;font-family:"">d</span><span style="font-size:10.0pt;font-family:""> to the other oxidation</span><span style="font-size:10.0pt;font-family:""> states. <span>Vibrational frequency analysis, for the homoleptic monomers of tris</span> <span>[</span><span>Cr<sup>III</sup>(AC)<sub>3</sub>]<sup>0</sup> and </span>[Cr<sup>VI</sup>(AC)<sub>3</sub>]<sup>3+</sup> complexes, illustrate good harmony with the experimental and<span> theoretical calculated frequencies. Using the time</span></span><span style="font-size:10.0pt;font-family:"">-</span><span style="font-size:10.0pt;font-family:"">dependent DFT</span><span style="font-size:10.0pt;font-family:""> (TD-DFT) at the level of CAM-B3LYP/6-311++G(d,p), the vertical excitation energies were obtained. The stabilization energies derived using the second order perturbation </span><span style="font-size:10.0pt;font-family:"">theory, <i>E</i><sub>ij</sub><sup>(2)</sup>, of NBO analysis confirmed the greater charge transfer for the</span><span style="font-size:10.0pt;font-family:""> observed trends in the metal binding. The calculated binding </span><span style="font-size:10.0pt;font-family:"">energies</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">(ΔE) and interactions energies </span><span style="font-size:10.0pt;font-family:Symbol;">S</span><i><span style="font-size:10.0pt;font-family:"">E</span></i><sub><span style="font-size:10.0pt;font-family:"">ij</span></sub><sup><span style="font-size:10.0pt;font-family:"">(2)</span></sup><span style="font-size:10.0pt;font-family:""> favor</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">the formation of</span><span style="font-size:10.0pt;font-family:""> [Cr<sup>VI</sup>(AC)<sub>3</sub>]<sup>3+</sup> complexes. The findings of this study identify efficient electronic factors as major contributors to the metal binding affinities, with promising possibilities for the design of metal-ligand complexes and sensing of the metal ions.展开更多
In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properti...In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.展开更多
Time-dependent density-functional theory(TDDFT)has been successfully applied to predict excited-state properties of isolated and periodic systems.However,it cannot address a system coupled to an environment or whose n...Time-dependent density-functional theory(TDDFT)has been successfully applied to predict excited-state properties of isolated and periodic systems.However,it cannot address a system coupled to an environment or whose number of electrons is not conserved.To tackle these problems,TDDFT needs to be extended to accommodate open systems.This paper provides a comprehensive account of the recent developments of TDDFT for open systems(TDDFT-OS),including both theoretical and practical aspects.The practicality and accuracy of a latest TDDFT-OS method is demonstrated with two numerical examples:the time-dependent electron transport through a series of quasi-one-dimensional atomic chains,and the real-time electronic dynamics on a two-dimensional graphene surface.The advancement of TDDFT-OS may lead to promising applications in various fields of chemistry,including energy conversion and heterogeneous catalysis.展开更多
Chiroptical properties including electronic circular dichroism(ECD) and optical rotatory dispersion(ORD) of artemisinin and artemether have been fully studied using quantum-chemical calculation based on time-depen...Chiroptical properties including electronic circular dichroism(ECD) and optical rotatory dispersion(ORD) of artemisinin and artemether have been fully studied using quantum-chemical calculation based on time-dependent density functional theory.Both theoretical ECD and ORD of these two compounds were in good match with the experimental data.ECD spectrum of artemether could be totally attributed to the peroxide group,and that of artemisinin was an overlay of contribution from δ-lactone and peroxide moieties,which leading to a positive maximum at 260 nm.Our results showed that peroxide group could produce a broad ECD band in the far-UV region originated from electron transitions of HOMO →LUMO,HOMO-1 →LUMO and HOMO-2 →LUMO in the case of artemether.This work provided a theoretical interpretation of the ECD behavior of peroxide bond.展开更多
The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e.,bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density funct...The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e.,bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functionaltheory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorp-tion spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region ap-years for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs.展开更多
The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived s...The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.展开更多
The low-lying electronic states of Yb and YbO are investigated by using time-dependent relativistic density functional theory,which is based on the newly developed exact two-component Hamiltonian resulting from symmet...The low-lying electronic states of Yb and YbO are investigated by using time-dependent relativistic density functional theory,which is based on the newly developed exact two-component Hamiltonian resulting from symmetrized elimination of the small component.The nature of the excited states is analyzed by using the full molecular symmetry.The calculated results support the previous experimental assignment of the ground and excited states of YbO.展开更多
Time evaluation of wave functions for any quantum mechanical system/particle is essential nevertheless quantum mechanical counterpart of the time dependant classical wave equation does simply not appear. Epistemologic...Time evaluation of wave functions for any quantum mechanical system/particle is essential nevertheless quantum mechanical counterpart of the time dependant classical wave equation does simply not appear. Epistemologically and ontologically considered time dependant momentum operator is initially defined and an Alternative Time Dependant Schrodinger Wave Equation (ATDSWE) is plainly derived. Consequent equation is primarily solved for the free particles, in a closed system, signifying a good agreement with the outcomes of the ordinary TDSWE. Free particle solution interestingly goes further possibly tracing some signs of new pathways to resolve the mysterious quantum world.展开更多
In this paper, we show that many risk measures arising in Actuarial Sciences, Finance, Medicine, Welfare analysis, etc. are gathered in classes of Weighted Mean Loss or Gain (WMLG) statistics. Some of them are Upper T...In this paper, we show that many risk measures arising in Actuarial Sciences, Finance, Medicine, Welfare analysis, etc. are gathered in classes of Weighted Mean Loss or Gain (WMLG) statistics. Some of them are Upper Threshold Based (UTH) or Lower Threshold Based (LTH). These statistics may be time-dependent when the scene is monitored in the time and depend on specific functions w and d. This paper provides time-dependent and uniformly functional weak asymptotic laws that allow temporal and spatial studies of the risk as well as comparison among statistics in terms of dependence and mutual influence. The results are particularized for usual statistics like the Kakwani and Shorrocks ones that are mainly used in welfare analysis. Data-driven applications based on pseudo-panel data are provided.展开更多
By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs)...By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in a As NRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the a As NR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.展开更多
基金The project was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 05A002)the Prominent Mid-youth Science and Technology Foundation of Hunan Province (No. 04JJ1010)
文摘Electronic properties, such as HOMO and LUMO energies, band gaps, ionization potential (IP) and electron affinity (EA) of 2,7- and 3,6-1inked carbazole trimers, two conjugated oligomcrs with different linkages of carbazole, were studicd by the density functional theory with Becke-Lee-Young-Parr composite exchange correlation functional (B3LYP). The absorption spectra of these compounds were also investigated by time-dependent density functional theory (TD-DFT) with 6-3 IG* basis set. The calculated results indicated that the HOMO and LUMO of the 2,7- and 3,6-1inked carbazole trimers are both slightly destabilized on going from methyl substitution to sec-butyl substitution. Both IP and EA exhibit their good hole-transporting but poor electronaccepting ability. The presence of alkyl groups on the nitrogen atoms does not affect the intra-chain electronic delocalization along the molecular frame. Thus no significant effect on the band gap and absorption spectra of compounds has been found.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074176 and 10976019)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100181110080)
文摘We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time- dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074176 and 10976019) and the Doctoral Program of Higher Education of China (Grant No. 20100181110080).
文摘By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts to leave the Cl atom and is reflected by the C60 wall. The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H-Cl bond axis are investigated. The radial oscillation is also found in the two polarization directions of the laser pulse. The relaxation time of the H-Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization. Those results are important for studying the dynamics of the chemical bond at an atomic level.
文摘The study of various oxidation states of chromium with Sargassum <i>sp</i>. is of particular interest since hexavalent chromium </span><span style="font-size:10.0pt;font-family:"">is </span><span style="font-size:10.0pt;font-family:"">reduced to trivalent chromium in </span><span style="font-size:10.0pt;font-family:"">an </span><span style="font-size:10.0pt;font-family:"">aqueous solution. In this study, a systematic density functional theory (DFT) calculations were performed to study the interactions of transition metal chromium ion with different oxidation states and spin states with the <i>Sar</i></span><i><span style="font-size:10.0pt;font-family:"">gassum sp</span></i><span style="font-size:10.0pt;font-family:"">. decorated with carboxylate</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">(acetate) at the wB97XD/6-311++</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">G(d,p)</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">level of theory. The structures and binding energies of chromium met<span>al</span></span><span style="font-size:10.0pt;font-family:"">-</span><span style="font-size:10.0pt;font-family:"">carboxylate complexes at various oxidation states and spin states in gas</span><span style="font-size:10.0pt;font-family:""> phase were examined. The coordination strength of Cr(VI) with the acetate <span>ligand was predominantly the strongest compare</span></span><span style="font-size:10.0pt;font-family:"">d</span><span style="font-size:10.0pt;font-family:""> to the other oxidation</span><span style="font-size:10.0pt;font-family:""> states. <span>Vibrational frequency analysis, for the homoleptic monomers of tris</span> <span>[</span><span>Cr<sup>III</sup>(AC)<sub>3</sub>]<sup>0</sup> and </span>[Cr<sup>VI</sup>(AC)<sub>3</sub>]<sup>3+</sup> complexes, illustrate good harmony with the experimental and<span> theoretical calculated frequencies. Using the time</span></span><span style="font-size:10.0pt;font-family:"">-</span><span style="font-size:10.0pt;font-family:"">dependent DFT</span><span style="font-size:10.0pt;font-family:""> (TD-DFT) at the level of CAM-B3LYP/6-311++G(d,p), the vertical excitation energies were obtained. The stabilization energies derived using the second order perturbation </span><span style="font-size:10.0pt;font-family:"">theory, <i>E</i><sub>ij</sub><sup>(2)</sup>, of NBO analysis confirmed the greater charge transfer for the</span><span style="font-size:10.0pt;font-family:""> observed trends in the metal binding. The calculated binding </span><span style="font-size:10.0pt;font-family:"">energies</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">(ΔE) and interactions energies </span><span style="font-size:10.0pt;font-family:Symbol;">S</span><i><span style="font-size:10.0pt;font-family:"">E</span></i><sub><span style="font-size:10.0pt;font-family:"">ij</span></sub><sup><span style="font-size:10.0pt;font-family:"">(2)</span></sup><span style="font-size:10.0pt;font-family:""> favor</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">the formation of</span><span style="font-size:10.0pt;font-family:""> [Cr<sup>VI</sup>(AC)<sub>3</sub>]<sup>3+</sup> complexes. The findings of this study identify efficient electronic factors as major contributors to the metal binding affinities, with promising possibilities for the design of metal-ligand complexes and sensing of the metal ions.
文摘In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.
基金supported by the National Natural Science Foundation of China(21103157,21233007,and 21322305)the Fundamental Research Funds for Central Universities(2340000034 and 2340000025)the Strategic Priority Research Program(B)of the CAS(XDB01020000)
文摘Time-dependent density-functional theory(TDDFT)has been successfully applied to predict excited-state properties of isolated and periodic systems.However,it cannot address a system coupled to an environment or whose number of electrons is not conserved.To tackle these problems,TDDFT needs to be extended to accommodate open systems.This paper provides a comprehensive account of the recent developments of TDDFT for open systems(TDDFT-OS),including both theoretical and practical aspects.The practicality and accuracy of a latest TDDFT-OS method is demonstrated with two numerical examples:the time-dependent electron transport through a series of quasi-one-dimensional atomic chains,and the real-time electronic dynamics on a two-dimensional graphene surface.The advancement of TDDFT-OS may lead to promising applications in various fields of chemistry,including energy conversion and heterogeneous catalysis.
基金supported by the Fundamental Research Funds for the Central Institutes of China(No.2012ZD03)
文摘Chiroptical properties including electronic circular dichroism(ECD) and optical rotatory dispersion(ORD) of artemisinin and artemether have been fully studied using quantum-chemical calculation based on time-dependent density functional theory.Both theoretical ECD and ORD of these two compounds were in good match with the experimental data.ECD spectrum of artemether could be totally attributed to the peroxide group,and that of artemisinin was an overlay of contribution from δ-lactone and peroxide moieties,which leading to a positive maximum at 260 nm.Our results showed that peroxide group could produce a broad ECD band in the far-UV region originated from electron transitions of HOMO →LUMO,HOMO-1 →LUMO and HOMO-2 →LUMO in the case of artemether.This work provided a theoretical interpretation of the ECD behavior of peroxide bond.
文摘The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e.,bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functionaltheory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorp-tion spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region ap-years for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs.
文摘The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20573003, 20625311 and 20773003)MOST of China (Grant Nos. 2006CB601103 and 2006AA01A119)
文摘The low-lying electronic states of Yb and YbO are investigated by using time-dependent relativistic density functional theory,which is based on the newly developed exact two-component Hamiltonian resulting from symmetrized elimination of the small component.The nature of the excited states is analyzed by using the full molecular symmetry.The calculated results support the previous experimental assignment of the ground and excited states of YbO.
文摘Time evaluation of wave functions for any quantum mechanical system/particle is essential nevertheless quantum mechanical counterpart of the time dependant classical wave equation does simply not appear. Epistemologically and ontologically considered time dependant momentum operator is initially defined and an Alternative Time Dependant Schrodinger Wave Equation (ATDSWE) is plainly derived. Consequent equation is primarily solved for the free particles, in a closed system, signifying a good agreement with the outcomes of the ordinary TDSWE. Free particle solution interestingly goes further possibly tracing some signs of new pathways to resolve the mysterious quantum world.
文摘In this paper, we show that many risk measures arising in Actuarial Sciences, Finance, Medicine, Welfare analysis, etc. are gathered in classes of Weighted Mean Loss or Gain (WMLG) statistics. Some of them are Upper Threshold Based (UTH) or Lower Threshold Based (LTH). These statistics may be time-dependent when the scene is monitored in the time and depend on specific functions w and d. This paper provides time-dependent and uniformly functional weak asymptotic laws that allow temporal and spatial studies of the risk as well as comparison among statistics in terms of dependence and mutual influence. The results are particularized for usual statistics like the Kakwani and Shorrocks ones that are mainly used in welfare analysis. Data-driven applications based on pseudo-panel data are provided.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21673296 and 11334014)the Science and Technology Plan of Hunan Province,China(Grant No.2015RS4002)the Postdoctoral Science Foundation of Central South University,China
文摘By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in a As NRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the a As NR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.
基金This work was supported by the National Natural Science Foundation of China(No.22273065 and No.21673158)Science&Technology Commission of Shanghai Municipality(14DZ2261100).