In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Usin...A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.展开更多
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener...This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.展开更多
This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with inc...This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.展开更多
A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequenc...A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.展开更多
Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condit...Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.展开更多
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ...This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.展开更多
We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation...We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation of our previous work.Subsequently,this framework is specifically tailored to the susceptible-infectious-removed(SIR)model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations.The SIR model consists of three states,namely,the susceptible,infectious,and removed compartments.The coupling among these states is controlled by two parameters,the infection rate and the recovery rate.The simplicity of the SIR model and similar compartmental models make them applicable to many classes of infectious diseases.However,the combined assumption of a deterministic model and time-invariance among the model parameters are two significant impediments which critically limit their use for long-term predictions.The tendency of certain model parameters to vary in time due to seasonal trends,non-pharmaceutical interventions,and other random effects necessitates a model that structurally permits the incorporation of such time-varying effects.Complementary to this,is the need for a robust mechanism for the estimation of the parameters of the resulting model from data.To this end,we consider an augmented state vector,which appends the time-varying parameters to the original system states whereby the time evolution of the time-varying parameters are driven by an artificial noise process in a standard manner.Distinguishing between time-varying and time-invariant parameters in this fashion limits the introduction of artificial dynamics into the system,and provides a robust,fully Bayesian approach for estimating the timeinvariant system parameters as well as the elements of the process noise covariance matrix.This computational framework is implemented by leveraging the robustness of the Markov chain Monte Carlo algorithm permits the estimation of time-invariant parameters while nested nonlinear filters concurrently perform the joint estimation of the system states and time-varying parameters.We demonstrate performance of the framework by first considering a series of examples using synthetic data,followed by an exposition on public health data collected in the province of Ontario.展开更多
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive...To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.展开更多
Transmission line is a vital part of the power system that connects two major points,the generation,and the distribution.For an efficient design,stable control,and steady operation of the power system,adequate knowled...Transmission line is a vital part of the power system that connects two major points,the generation,and the distribution.For an efficient design,stable control,and steady operation of the power system,adequate knowledge of the transmission line parameters resistance,inductance,capacitance,and conductance is of great importance.These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable.This paper presents a method to optimally estimate the parameters using the input-output quantities i.e.,voltages,currents,and power factor of the transmission line.The equivalentπ-network model is used and the terminal data i.e.,sending-end and receiving-end quantities are assumed as available measured data.The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function.An improved particle swarm optimization(PSO)in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters.Two cases are considered for parameter estimation,the first case is when the line conductance is neglected and in the second case,the conductance is considered into account.The results obtained by the improved algorithm are compared with the standard version of the algorithm,firefly algorithm and artificial bee colony algorithm for 30 number of trials.It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis,comparatively.展开更多
In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that...In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB.展开更多
In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Uni...In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly.展开更多
In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature...In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.展开更多
In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tens...In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.展开更多
Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),w...Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),which may deteriorate application performance based on PMUs.To address that,this paper proposes two robust methods of correcting time-varying PAD deviation with unknown parameters of TL(ParTL).First,the phenomena of time-varying PAD deviation observed from field PMU data are presented.Two general formulations for PAD estimation are then established.To simplify the formulations,estimation of PADs is converted into the optimal problem with a single ParTL as the variable,yielding a linear estimation of PADs.The latter is used by second-order Taylor series expansion to estimate PADs accurately.To reduce the impact of possible abnormal amplitude data in field data,the IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)weighting function is adopted.Results using both simulated and field data verify the effectiveness and robustness of the proposed methods.展开更多
This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these re...This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.展开更多
In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Pr...In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.展开更多
The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and o...The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].展开更多
This paper introduces an adaptive procedure for the problem of synchronization and parameter identification for chaotic networks with time-varying delay by combining adaptive control and linear feedback. In particular...This paper introduces an adaptive procedure for the problem of synchronization and parameter identification for chaotic networks with time-varying delay by combining adaptive control and linear feedback. In particular, we consider that the equations xi(t) (for i = r+ 1, r+2,... ,n) can be expressed by the former xi(t) (for i=1,2,...,r), which is not the same as the previous equation. This approach is also able to track changes in the operating parameters of chaotic networks rapidly and the speed of synchronization and parameter estimation can be adjusted. In addition, this method is quite robust against the effect of slight noise and the estimated value of a parameter fluctuates around the correct value.展开更多
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金Automobile Industrial Science Foundation of Shanghai (No.2000187)
文摘A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.
基金National Key R&D Program of China(2018YFA0702200)National Natural Science Foundation of China(61627809,62173080)Liaoning Revitalization Talents Program(XLYC1801005)。
文摘This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.
基金Project supported by the National Natural Science Foundation of China (Grant No 10847140)the Doctorial Start-up Fund of Lanzhou University of Technology (Grant No 409)
文摘This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.
基金Supported by the National Natural Science Foundation of China(91216103)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX13_130)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.
文摘Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.
基金supported in part by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(No.52075262,51905271,52275062)+1 种基金the Fok Ying-Tong Education Foundation of China(No.171044)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0471)。
文摘This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.
基金the funding from the New Frontiers in Research Fund(NFRF)2022 Special Call e Research for Postpandemic Recovery(Grant no:NFRFR-2022-00395).
文摘We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation of our previous work.Subsequently,this framework is specifically tailored to the susceptible-infectious-removed(SIR)model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations.The SIR model consists of three states,namely,the susceptible,infectious,and removed compartments.The coupling among these states is controlled by two parameters,the infection rate and the recovery rate.The simplicity of the SIR model and similar compartmental models make them applicable to many classes of infectious diseases.However,the combined assumption of a deterministic model and time-invariance among the model parameters are two significant impediments which critically limit their use for long-term predictions.The tendency of certain model parameters to vary in time due to seasonal trends,non-pharmaceutical interventions,and other random effects necessitates a model that structurally permits the incorporation of such time-varying effects.Complementary to this,is the need for a robust mechanism for the estimation of the parameters of the resulting model from data.To this end,we consider an augmented state vector,which appends the time-varying parameters to the original system states whereby the time evolution of the time-varying parameters are driven by an artificial noise process in a standard manner.Distinguishing between time-varying and time-invariant parameters in this fashion limits the introduction of artificial dynamics into the system,and provides a robust,fully Bayesian approach for estimating the timeinvariant system parameters as well as the elements of the process noise covariance matrix.This computational framework is implemented by leveraging the robustness of the Markov chain Monte Carlo algorithm permits the estimation of time-invariant parameters while nested nonlinear filters concurrently perform the joint estimation of the system states and time-varying parameters.We demonstrate performance of the framework by first considering a series of examples using synthetic data,followed by an exposition on public health data collected in the province of Ontario.
基金Basic Science&Research Foundation of IEM,CEA under Grant No.2013B07International Science&Technology Cooperation Program of China under Grant No.2012DFA70810Natural Science Foundation of China under Grant No.50908216
文摘To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.
文摘Transmission line is a vital part of the power system that connects two major points,the generation,and the distribution.For an efficient design,stable control,and steady operation of the power system,adequate knowledge of the transmission line parameters resistance,inductance,capacitance,and conductance is of great importance.These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable.This paper presents a method to optimally estimate the parameters using the input-output quantities i.e.,voltages,currents,and power factor of the transmission line.The equivalentπ-network model is used and the terminal data i.e.,sending-end and receiving-end quantities are assumed as available measured data.The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function.An improved particle swarm optimization(PSO)in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters.Two cases are considered for parameter estimation,the first case is when the line conductance is neglected and in the second case,the conductance is considered into account.The results obtained by the improved algorithm are compared with the standard version of the algorithm,firefly algorithm and artificial bee colony algorithm for 30 number of trials.It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis,comparatively.
基金Project supported by the National Natural Science Foundation of China (Grant No.60674026)the Jiangsu Provincial Natural Science Foundation of China (Grant No.BK2007016)
文摘In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB.
文摘In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly.
文摘In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.
基金funded by the National Natural Science Foundation of China(Grant Number 52075361)Shanxi Province Science and Technology Major Project(Grant Number 20201102003)+3 种基金Lvliang Science and Technology Guidance Special Key R&D Project(Grant Number 2022XDHZ08)National Natural Science Foundation of China(Grant Number 51905367)Shanxi Natural Science Foundation General Project(Grant Numbers 202103021224271,202203021211201)Shanxi Province Key Research and Development Plan(Grant Number 202102020101013).
文摘In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.
基金This work was supported by the National Key Research and Development Program of China(2017YFB0902901)National Natural Science Foundation of China(51627811).
文摘Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),which may deteriorate application performance based on PMUs.To address that,this paper proposes two robust methods of correcting time-varying PAD deviation with unknown parameters of TL(ParTL).First,the phenomena of time-varying PAD deviation observed from field PMU data are presented.Two general formulations for PAD estimation are then established.To simplify the formulations,estimation of PADs is converted into the optimal problem with a single ParTL as the variable,yielding a linear estimation of PADs.The latter is used by second-order Taylor series expansion to estimate PADs accurately.To reduce the impact of possible abnormal amplitude data in field data,the IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)weighting function is adopted.Results using both simulated and field data verify the effectiveness and robustness of the proposed methods.
文摘This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.
文摘In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.
文摘The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].
基金Project supported by the National Natural Science Foundation of China (Grant Nos.70571030 and 90610031)the Social Science Foundation from Ministry of Education of China (Grant No.08JA790057)the Advanced Talents' Foundation and Student's Foundation of Jiangsu University (Grant Nos.07JDG054 and 07A075)
文摘This paper introduces an adaptive procedure for the problem of synchronization and parameter identification for chaotic networks with time-varying delay by combining adaptive control and linear feedback. In particular, we consider that the equations xi(t) (for i = r+ 1, r+2,... ,n) can be expressed by the former xi(t) (for i=1,2,...,r), which is not the same as the previous equation. This approach is also able to track changes in the operating parameters of chaotic networks rapidly and the speed of synchronization and parameter estimation can be adjusted. In addition, this method is quite robust against the effect of slight noise and the estimated value of a parameter fluctuates around the correct value.