The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of...The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process.展开更多
A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition...A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.展开更多
Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron s...Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron sputtering. The films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and ultraviolet visible spectroscopy, and the effect of annealing atmosphere on the properties of films was studied. The Ga_(2)O_(3) films changed from amorphous to β-Ga_(2)O_(3) after annealing at 900 °C. The films were composed of micro crystalline particles with a diameter of about 5–20 nm.The β-Ga_(2)O_(3) had high transmittance for wavelengths above 300 nm, and obvious absorption for solar-blind signals at 200–280 nm.The metal semiconductor metal type solar-blind detectors were prepared. The detector based on Sn-doped β-Ga_(2)O_(3) thin film annealed in N_2 has the best response performance to 254 nm light. The photo-current is 10 μA at 20 V, the dark-current is 5.76 pA,the photo dark current ratio is 1.7 × 10~6, the response rate is 12.47 A/W, the external quantum efficiency is 6.09 × 10~3%, the specific detection rate is 2.61 × 10~(12) Jones, the response time and recovery time are 378 and 90 ms, respectively.展开更多
Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the imp...Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the impact of different concentrations of Ho^3+ ion on the UC luminescence intensity was discussed. The law of luminescence intensity versus pump power shows that the 474 nm blue emission, 538 nm green emission, and 642 nm red emission are all due to the two-photon process, while the 450 nm blue emission is a three-photon process. The UC mechanism and processes were also analyzed. The sample was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result shows that Ho^3+ ,Tm^3+ , and Yb^3+ co-doped NaYF4 prepared by the hydrothermal method exhibits a hexagonal nanocrystal.展开更多
A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was bas...A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded.展开更多
Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared.According to McCumber theory, the absorption and stimulated emission cross-section...Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared.According to McCumber theory, the absorption and stimulated emission cross-sections corresponding to the 3H6←→3F4 transitions of Tm3+(at 1.8 μm) and the 5I8←→5I7 transitions of Ho3+(at 2.0 μm) were obtained, and respective gain cross-section spectra were also computed as a function of population inversion according to absorption and emission cross-sections and the ion concentrations.For Tm3+-doped germanate glasses, the maximum of the absorption, emission, and gain cross-sections reached a value higher than those reported for fluorozirconate, fluoride, and oxyfluoride glasses.For Ho3+-doped germanate glasses, the maximum of absorption, emission, and gain cross-sections reached a value higher than that reported for fluorozircoaluminate glasses.Hence, these Tm3+-doped and Ho3+-doped germanate glasses exhibited an advantage for application in mid-infrared lasers at about 1.8 and 2.0 μm wavelength.展开更多
Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence c...Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.展开更多
Nd^(3+)-doped NaGdF_(4):Yb,Tm nanocrystals were synthesized by an improved high-temperature thermal decomposition method,and the effects of doping concentrations on the crystal structure,phase composition,and upconver...Nd^(3+)-doped NaGdF_(4):Yb,Tm nanocrystals were synthesized by an improved high-temperature thermal decomposition method,and the effects of doping concentrations on the crystal structure,phase composition,and upconverted fluorescence intensity were also investigated.The results reveal that the introduction of Nd^(3+) ions does not cause the transformation of the crystal phase,but induce the change of the unit cell parameters.Meanwhile,the fluorescence intensity of the synthesized nanocrystals when co-doped with 3 mol%Nd^(3+) is the strongest under the excitation of 980 nm laser,which is 3.9 times that of the Nd^(3+)-free doped nanoparticles,and the average size is 62.9 nm.And it is located in the blue area of the CIE coordinate diagram,and the corresponding color purity is 91.81%under the same experimental conditions.The resulting nanocrystals show the potential as excellent fluorescence labeling and in vivo imaging probes.展开更多
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue...Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.展开更多
Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are meas...Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are measured, and the mechanisms of energy transfer among Yb^3+ Er^3+ and Tm^3+ ions are discussed. The results show that there is an unexpected wavelength at 900-nm emission from Yb^3+ Stark splitting levels to pump Tm^3+ ions and there exists an optimum pump power. The concentration of the Tm^3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the yb^3+:Er^3+:Tm^3+ co-doped borosilicate glasses.展开更多
By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and flu...By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and fluorescence decay curves were used to explore the crystal structure and optical performance of the obtained samples.When excited by 362 nm light,the cool white emission was realized by Na_(5)Y_(9)F_(32)single crystal triply-doped with 0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/0.8 mol%Eu^(3+),in which the Commission Internationale de l’Eclairage(CIE)chromaticity coordinate was(0.2995,0.3298)and the correlated color temperature(CCT)was 6586 K.The integrated normalized emission intensity of the tridoped single crystal at 448 K could keep 62%of that at 298 K.The internal quantum yield(QY)was calculated to be~15.16%by integrating spheres.These results suggested that the single crystals tri-doped with Tm^(3+),Tb^(3+)and Eu^(3+)ions have a promising potential application for white light-emitting diodes(w-LEDs).展开更多
Na_(5)Y_(9)F_(32) single crystals doped with ~0.8-mol% Ho^(3+),~1-mol% Tm^(3+),and various Er^(3+) ion concentrations were prepared by a modified Bridgman method.The effects of Er^(3+)ion concentration on 2.0-μm emis...Na_(5)Y_(9)F_(32) single crystals doped with ~0.8-mol% Ho^(3+),~1-mol% Tm^(3+),and various Er^(3+) ion concentrations were prepared by a modified Bridgman method.The effects of Er^(3+)ion concentration on 2.0-μm emission excited by an800-nm laser diode were investigated with the help of their spectroscopic properties.The intensity of 2.0-μm emission reached to maximum when the Er^(3+) ion concentration was ~1 mol%.The energy transfer mechanisms between Er^(3+),Ho^(3+),and Tm^(3+) ions were identified from the change of the absorption spectra,the emission spectra,and the measured decay curves.The maximum 2.0-μm emission cross section of the Er^(3+)/Ho^(3+)/Tm^(3+)tri-doped Na_(5)Y_(9)F_(32) single crystal reached 5.26 × 10^(-21) cm^(2).The gain cross section spectra were calculated according to the absorption and emission cross section spectra.The cross section for ~2.0-μm emission became a positive gain once the inversion level of population was reached 30%.The energy transfer efficiency was further increased by 11.81% through the incorporation of Er^(3+) ion into Ho^(3+)/Tm^(3+) system estimated from the measured lifetimes of Ho^(3+)/Tm^(3+)-and Er^(3+)/Ho^(3+)/Tm^(3+)-doped Na_(5)Y_(9)F_(32)single crystals.The present results illustrated that the Er^(3+)/Ho^(3+)/Tm^(3+)tri-doped Na_(5)Y_(9)F_(32) single crystals can be used as promising candidate for 2.0-μm laser.展开更多
Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X...Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.展开更多
基金the National Natural Science Foundation of China (92034301,22078063 and 22022804)Major Program of Qingyuan Innovation Laboratory (00121003)the Natural Science Foundation of Fujian Province (2020H6007)。
文摘The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process.
基金supported by the National Natural Science Foundation of China(21804050)the National Key R and D Program of China(2018YFD0901003)+2 种基金the Science and Technology Planning Project of Xiamen,China(3502Z20183031)the Fujian Provincial Fund Project(2018J01432)the Xiamen Science and Technology Planning Project,China(3502Z20183031)。
文摘A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.
基金supported by the National Natural Science Foundation of China (Grant No. 62204203)the Shaanxi Natural Science Basic Research Program (Grant No. 2022JQ-701)。
文摘Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron sputtering. The films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and ultraviolet visible spectroscopy, and the effect of annealing atmosphere on the properties of films was studied. The Ga_(2)O_(3) films changed from amorphous to β-Ga_(2)O_(3) after annealing at 900 °C. The films were composed of micro crystalline particles with a diameter of about 5–20 nm.The β-Ga_(2)O_(3) had high transmittance for wavelengths above 300 nm, and obvious absorption for solar-blind signals at 200–280 nm.The metal semiconductor metal type solar-blind detectors were prepared. The detector based on Sn-doped β-Ga_(2)O_(3) thin film annealed in N_2 has the best response performance to 254 nm light. The photo-current is 10 μA at 20 V, the dark-current is 5.76 pA,the photo dark current ratio is 1.7 × 10~6, the response rate is 12.47 A/W, the external quantum efficiency is 6.09 × 10~3%, the specific detection rate is 2.61 × 10~(12) Jones, the response time and recovery time are 378 and 90 ms, respectively.
基金Project supported bythe Key Laboratory of Rare Earth Chemistry and Physics ,ChangchunInstitute of Applied Chemistry ,Chinese Academy of Sciences (R020202K)
文摘Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the impact of different concentrations of Ho^3+ ion on the UC luminescence intensity was discussed. The law of luminescence intensity versus pump power shows that the 474 nm blue emission, 538 nm green emission, and 642 nm red emission are all due to the two-photon process, while the 450 nm blue emission is a three-photon process. The UC mechanism and processes were also analyzed. The sample was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result shows that Ho^3+ ,Tm^3+ , and Yb^3+ co-doped NaYF4 prepared by the hydrothermal method exhibits a hexagonal nanocrystal.
基金supported by the Natural Science Foundation of Zhejiang Provience, China (2006C21082)National Natural Science Foundation of China (60677015)+1 种基金Foundation of Ningbo University (XR0710018)sponsored by KC Wong Magna Fund in NingBo University
文摘A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded.
基金supported by the National Natural Science Foundation of China (Grant 60777030)the Open Foundation of the Key Laboratory of Ningbo City (2007A22010) K.C.Wong Magna Fund in Ningbo University
文摘Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared.According to McCumber theory, the absorption and stimulated emission cross-sections corresponding to the 3H6←→3F4 transitions of Tm3+(at 1.8 μm) and the 5I8←→5I7 transitions of Ho3+(at 2.0 μm) were obtained, and respective gain cross-section spectra were also computed as a function of population inversion according to absorption and emission cross-sections and the ion concentrations.For Tm3+-doped germanate glasses, the maximum of the absorption, emission, and gain cross-sections reached a value higher than those reported for fluorozirconate, fluoride, and oxyfluoride glasses.For Ho3+-doped germanate glasses, the maximum of absorption, emission, and gain cross-sections reached a value higher than that reported for fluorozircoaluminate glasses.Hence, these Tm3+-doped and Ho3+-doped germanate glasses exhibited an advantage for application in mid-infrared lasers at about 1.8 and 2.0 μm wavelength.
基金Project supported by the Shanghai "Post-Qi-Ming-Xing plan" for Young Scientists, China (Grant No 04QMX1448) and the National Natural Science Foundation of China (Grant No 60207006).The author would like to thank Wen L,Shen Y H and Zhao Y for their help in machining and measuring.
文摘Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.
文摘Nd^(3+)-doped NaGdF_(4):Yb,Tm nanocrystals were synthesized by an improved high-temperature thermal decomposition method,and the effects of doping concentrations on the crystal structure,phase composition,and upconverted fluorescence intensity were also investigated.The results reveal that the introduction of Nd^(3+) ions does not cause the transformation of the crystal phase,but induce the change of the unit cell parameters.Meanwhile,the fluorescence intensity of the synthesized nanocrystals when co-doped with 3 mol%Nd^(3+) is the strongest under the excitation of 980 nm laser,which is 3.9 times that of the Nd^(3+)-free doped nanoparticles,and the average size is 62.9 nm.And it is located in the blue area of the CIE coordinate diagram,and the corresponding color purity is 91.81%under the same experimental conditions.The resulting nanocrystals show the potential as excellent fluorescence labeling and in vivo imaging probes.
基金Funded by the National Natural Science Foundation of China (No. 50772045)the Society Development Foundation of Yunnan Province (No. 2007E036M)
文摘Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015)the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are measured, and the mechanisms of energy transfer among Yb^3+ Er^3+ and Tm^3+ ions are discussed. The results show that there is an unexpected wavelength at 900-nm emission from Yb^3+ Stark splitting levels to pump Tm^3+ ions and there exists an optimum pump power. The concentration of the Tm^3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the yb^3+:Er^3+:Tm^3+ co-doped borosilicate glasses.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275133)the Natural Science Foundation of Zhejiang Province of China(Grant No.LY22E020002)+1 种基金the Natural Science Foundation of Ningbo(Grant Nos.2021J077 and 202003N4099)K.C.Wong Magna Fund in Ningbo University
文摘By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and fluorescence decay curves were used to explore the crystal structure and optical performance of the obtained samples.When excited by 362 nm light,the cool white emission was realized by Na_(5)Y_(9)F_(32)single crystal triply-doped with 0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/0.8 mol%Eu^(3+),in which the Commission Internationale de l’Eclairage(CIE)chromaticity coordinate was(0.2995,0.3298)and the correlated color temperature(CCT)was 6586 K.The integrated normalized emission intensity of the tridoped single crystal at 448 K could keep 62%of that at 298 K.The internal quantum yield(QY)was calculated to be~15.16%by integrating spheres.These results suggested that the single crystals tri-doped with Tm^(3+),Tb^(3+)and Eu^(3+)ions have a promising potential application for white light-emitting diodes(w-LEDs).
基金Project supported by the National Natural Science Foundation of China(Grant No.51772159)the Natural Science Foundation of Zhejiang Province+2 种基金China(Grant No.LZ17E020001)the Natural Science Foundation of Ningbo City(Grant No.202003N4099)K C Wong Magna Fund in Ningbo University。
文摘Na_(5)Y_(9)F_(32) single crystals doped with ~0.8-mol% Ho^(3+),~1-mol% Tm^(3+),and various Er^(3+) ion concentrations were prepared by a modified Bridgman method.The effects of Er^(3+)ion concentration on 2.0-μm emission excited by an800-nm laser diode were investigated with the help of their spectroscopic properties.The intensity of 2.0-μm emission reached to maximum when the Er^(3+) ion concentration was ~1 mol%.The energy transfer mechanisms between Er^(3+),Ho^(3+),and Tm^(3+) ions were identified from the change of the absorption spectra,the emission spectra,and the measured decay curves.The maximum 2.0-μm emission cross section of the Er^(3+)/Ho^(3+)/Tm^(3+)tri-doped Na_(5)Y_(9)F_(32) single crystal reached 5.26 × 10^(-21) cm^(2).The gain cross section spectra were calculated according to the absorption and emission cross section spectra.The cross section for ~2.0-μm emission became a positive gain once the inversion level of population was reached 30%.The energy transfer efficiency was further increased by 11.81% through the incorporation of Er^(3+) ion into Ho^(3+)/Tm^(3+) system estimated from the measured lifetimes of Ho^(3+)/Tm^(3+)-and Er^(3+)/Ho^(3+)/Tm^(3+)-doped Na_(5)Y_(9)F_(32)single crystals.The present results illustrated that the Er^(3+)/Ho^(3+)/Tm^(3+)tri-doped Na_(5)Y_(9)F_(32) single crystals can be used as promising candidate for 2.0-μm laser.
基金Project (2009AA035002) supported by the High-tech Research and Development Program of China
文摘Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.