Baltica was one of continents formed as a result of Rodinia break-up 850-550 Ma. It was separated from Amazonia(?) by the Tornquist Ocean, the opening of which was preceded by Neoproterozoic extension in a network of ...Baltica was one of continents formed as a result of Rodinia break-up 850-550 Ma. It was separated from Amazonia(?) by the Tornquist Ocean, the opening of which was preceded by Neoproterozoic extension in a network of continental rifts. Some of these rifts were subsequently aborted whereas the Tornquist Rift gave rise to splitting of Rodinia and formation of the Tornquist Ocean. The results of 1-D subsidence analysis at the fossil passive margin of Baltica provided insight in the timing and kinematics of continental rifting that led to break-up of Rodinia. Rifting was associated with Neoproterozoic syn-rift subsidence accompanied by deposition of continental coarse-grained sediments and emplacement of continental basalts.Transition from a syn-rift to post-rift phase in the latest Ediacaran to earliest early Cambrian was concomitant with deposition of continental conglomerates and arkoses, laterally passing into mudstones. An extensional scenario of the break-up of Rodinia along the Tornquist Rift is based on the character of tectonic subsidence curves, evolution of syn-rift and post-rift depocenters in time, as well as geochemistry and geochronology of the syn-rift volcanics. It is additionally reinforced by the high-quality deep seismic reflection data from SE Poland, located above the SW edge of the East European Craton. The seismic data allowed for identification of a deeply buried(11-18 km), well-preserved extensional half-graben, developed in the Palaeoproterozoic crystalline basement and filled with a Neoproterozoic syn-rift volcano-sedimentary succession. The results of depth-to-basement study based on integration of seismic and gravity data show the distribution of local NE-SW elongated Neoproterozoic depocenters within the SW slope of the East European Craton. Furthermore,they document the rapid south-eastwards thickness increase of the Neoproterozoic succession towards the NW-SE oriented craton margin. This provides evidence for extensive crustal thinning occurring prior to the break-up of Rodinia and formation of the Tornquist Ocean.展开更多
基金supported by the National Science Centre (NCN)(grant No.2012/05/B/ST10/00521)
文摘Baltica was one of continents formed as a result of Rodinia break-up 850-550 Ma. It was separated from Amazonia(?) by the Tornquist Ocean, the opening of which was preceded by Neoproterozoic extension in a network of continental rifts. Some of these rifts were subsequently aborted whereas the Tornquist Rift gave rise to splitting of Rodinia and formation of the Tornquist Ocean. The results of 1-D subsidence analysis at the fossil passive margin of Baltica provided insight in the timing and kinematics of continental rifting that led to break-up of Rodinia. Rifting was associated with Neoproterozoic syn-rift subsidence accompanied by deposition of continental coarse-grained sediments and emplacement of continental basalts.Transition from a syn-rift to post-rift phase in the latest Ediacaran to earliest early Cambrian was concomitant with deposition of continental conglomerates and arkoses, laterally passing into mudstones. An extensional scenario of the break-up of Rodinia along the Tornquist Rift is based on the character of tectonic subsidence curves, evolution of syn-rift and post-rift depocenters in time, as well as geochemistry and geochronology of the syn-rift volcanics. It is additionally reinforced by the high-quality deep seismic reflection data from SE Poland, located above the SW edge of the East European Craton. The seismic data allowed for identification of a deeply buried(11-18 km), well-preserved extensional half-graben, developed in the Palaeoproterozoic crystalline basement and filled with a Neoproterozoic syn-rift volcano-sedimentary succession. The results of depth-to-basement study based on integration of seismic and gravity data show the distribution of local NE-SW elongated Neoproterozoic depocenters within the SW slope of the East European Craton. Furthermore,they document the rapid south-eastwards thickness increase of the Neoproterozoic succession towards the NW-SE oriented craton margin. This provides evidence for extensive crustal thinning occurring prior to the break-up of Rodinia and formation of the Tornquist Ocean.