traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to...traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.展开更多
Hydrogenations and air oxidations usually have low apparent reaction rate,generally controlled by mass transfer rate,and widely exist in the modern chemical manufacturing process.The key to increase the mass transfer ...Hydrogenations and air oxidations usually have low apparent reaction rate,generally controlled by mass transfer rate,and widely exist in the modern chemical manufacturing process.The key to increase the mass transfer rate is the reduction of the liquid film resistance 1/kLa.In this work,the original concept of microinterface intensification for mass transfer and then for these reactions has been proposed.We derived the regulation model and set up the mathematical calculation method of micron-scale gas-liquid interface structure on mass transfer and reaction,designed the mechanical energy exchange device that can produce gas-liquid microinterface system on a large scale,and established the OMIS system which is able on line to measure the diameter and distribution of millions of microbubbles,interface area a and mass transfer film thicknessδM,as well as developed a series of microinterface intensified reactor systems(MIRs)for the applications of hydrogenation and air oxidation processes.It is believed that this research will provide an up-to-date development for the intensification of hydrogenation and air oxidation reactions.展开更多
Accurate calculation results of roll temperature are the key factors in rolling cooling and lubricating technology during the single-stand reversing cold rolling process. By combining the high-strength steel rolling e...Accurate calculation results of roll temperature are the key factors in rolling cooling and lubricating technology during the single-stand reversing cold rolling process. By combining the high-strength steel rolling experiments ,the numerical simulation of roll temperature, and the influence factors in reversing cold rolling were studied. The research results correspond with those of rolling experiments and show that the research method could provide effective instruction for roll cooling and emulsion flow rate control during the on-site rolling process.展开更多
The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains,the cross-sectional mean velocit...The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains,the cross-sectional mean velocity and the discharge capacity in compound channels. In this article,under the Boussinesq assumption and through analyzing the characteristics of velocity distribution in the interacting region between the main channel and its associated flood plain,the expression of momentum transfer coefficient was theoretically derived. On the basis of force balance,the expression of vertical apparent shear stress was obtained. By applying the experimental data from the British Engineering Research Council Flood Channel Facility (SERC-FCF),the relationship between the momentum transfer coefficient with the relative depth and the ratio of the flood plain width to the main channel width,was established,And hence the conveyance capacity in compound channels was calculated with Liu and Dong’s method. The computed results show that the momentum transfer coefficient relationship obtained is viable.展开更多
基金supported in part by National Science Foundation of China (Contract NO. 41030742)Guangxi Science Foundation and the Program for Science & Technology of Henan Province in China (Grant No. 142300410200)
文摘traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.
基金the financial support of National Natural Science Foundation of China(No.91634104,21776122 and 22178391)National Key Research&Development Program of China(No.2018YFB0604605)Jiangsu Science and Technology Plan Project(No.BM2018007)。
文摘Hydrogenations and air oxidations usually have low apparent reaction rate,generally controlled by mass transfer rate,and widely exist in the modern chemical manufacturing process.The key to increase the mass transfer rate is the reduction of the liquid film resistance 1/kLa.In this work,the original concept of microinterface intensification for mass transfer and then for these reactions has been proposed.We derived the regulation model and set up the mathematical calculation method of micron-scale gas-liquid interface structure on mass transfer and reaction,designed the mechanical energy exchange device that can produce gas-liquid microinterface system on a large scale,and established the OMIS system which is able on line to measure the diameter and distribution of millions of microbubbles,interface area a and mass transfer film thicknessδM,as well as developed a series of microinterface intensified reactor systems(MIRs)for the applications of hydrogenation and air oxidation processes.It is believed that this research will provide an up-to-date development for the intensification of hydrogenation and air oxidation reactions.
文摘Accurate calculation results of roll temperature are the key factors in rolling cooling and lubricating technology during the single-stand reversing cold rolling process. By combining the high-strength steel rolling experiments ,the numerical simulation of roll temperature, and the influence factors in reversing cold rolling were studied. The research results correspond with those of rolling experiments and show that the research method could provide effective instruction for roll cooling and emulsion flow rate control during the on-site rolling process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50579040, 50579041).
文摘The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains,the cross-sectional mean velocity and the discharge capacity in compound channels. In this article,under the Boussinesq assumption and through analyzing the characteristics of velocity distribution in the interacting region between the main channel and its associated flood plain,the expression of momentum transfer coefficient was theoretically derived. On the basis of force balance,the expression of vertical apparent shear stress was obtained. By applying the experimental data from the British Engineering Research Council Flood Channel Facility (SERC-FCF),the relationship between the momentum transfer coefficient with the relative depth and the ratio of the flood plain width to the main channel width,was established,And hence the conveyance capacity in compound channels was calculated with Liu and Dong’s method. The computed results show that the momentum transfer coefficient relationship obtained is viable.