We present in this paper an investigation of the nonlinear process of above-threshold ionization. The process arises when an atomic or molecular system, exposed to an intense laser pulse, continues to absorb more phot...We present in this paper an investigation of the nonlinear process of above-threshold ionization. The process arises when an atomic or molecular system, exposed to an intense laser pulse, continues to absorb more photons than that needed for the ionization to occur. We trigger this nonlinear process in a simple molecular system by exposing it to an intense transform-limited Gaussian laser pulse of 267-nm wavelength which is the third harmonic of an 800-nm wavelength Tisapphire laser. We explore the characteristics of the process by analyzing the kinetic-energy spectra of the electrons ejected from the molecular system under different laser peak intensities.展开更多
We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is ...We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance.展开更多
By using three-dimensional particle-in-cell simulations, externally injected electron beam acceleration and radiation in donut-like wake fields driven by a Laguerre-Gaussian pulse are investigated. Studies show that i...By using three-dimensional particle-in-cell simulations, externally injected electron beam acceleration and radiation in donut-like wake fields driven by a Laguerre-Gaussian pulse are investigated. Studies show that in the acceleration process the total charge and azimuthal momenta of electrons can be stably maintained at a distance of a few hundreds of micrometers. Electrons experience low-frequency spiral rotation and high-frequency betatron oscillation, which leads to a synchrotron-like radiation. The radiation spectrum is mainly determined by the betatron motion of electrons. The far field distribution of radiation intensity shows axial symmetry due to the uniform transverse injection and spiral rotation of electrons. Our studies suggest a new way to simultaneously generate hollow electron beam and radiation source from a compact laser plasma accelerator.展开更多
Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher princi...Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher principal quantum number by exposing them to specially designed frequency-chirped laser pulses. The population transfer from n=70 to n=75 states of lithium atoms with efficiency more than 90% is achieved by means of the sequential adiabatic rapid passages. The results agree well with the experimental ones and show that the coherent control of the population transfer from the lower n to the higher n states can be accomplished by the optimization of the chirping parameters and the intensity of laser field.展开更多
This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations...This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations. The half space is con-sidered to be made of an isotropic homogeneous thermoelastic material. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 2 ps. An exact solution of the problem is first obtained in Laplace transform space. Since the response is of more interest in the transient state, the inversion of Laplace transforms have been carried numerically. The derived expressions are computed numerically for copper and the results are presented in graphical form.展开更多
Based on the theory of the pulsed photoacoustic signal in liquid generated by a pulsed laser, a novel, optically noncontact, fast and accurate method for temperature-dependent ultrasonic velocities for ethanol and wat...Based on the theory of the pulsed photoacoustic signal in liquid generated by a pulsed laser, a novel, optically noncontact, fast and accurate method for temperature-dependent ultrasonic velocities for ethanol and water has been demonstrated. The experiment results are in good agreemerit with literature values.展开更多
An optical ultra-short pulse train with a duration of 2.9 ps was successfully generated from a passively mode-locked laser diode. The time-bandwidth product was 0.43, and it was very close to the transform-limited val...An optical ultra-short pulse train with a duration of 2.9 ps was successfully generated from a passively mode-locked laser diode. The time-bandwidth product was 0.43, and it was very close to the transform-limited value of a Gaussian waveform. The highest peak power of 10 mW in an InP-based passively mode-locked laser has been achieved. The laser is promisng as an optical source for an ultra-high-speed bit rate transmission system, especially for the optical time division multiplexing (OTDM) system.展开更多
文摘We present in this paper an investigation of the nonlinear process of above-threshold ionization. The process arises when an atomic or molecular system, exposed to an intense laser pulse, continues to absorb more photons than that needed for the ionization to occur. We trigger this nonlinear process in a simple molecular system by exposing it to an intense transform-limited Gaussian laser pulse of 267-nm wavelength which is the third harmonic of an 800-nm wavelength Tisapphire laser. We explore the characteristics of the process by analyzing the kinetic-energy spectra of the electrons ejected from the molecular system under different laser peak intensities.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11974108 and 11574082)Fundamental Research Funds for the Central Universities (Grant No. 2021MS046)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA020)。
文摘We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374209,11374210,and 11774227)the Major State Basic Research Development Program of China(Grant No.2015CB859700)
文摘By using three-dimensional particle-in-cell simulations, externally injected electron beam acceleration and radiation in donut-like wake fields driven by a Laguerre-Gaussian pulse are investigated. Studies show that in the acceleration process the total charge and azimuthal momenta of electrons can be stably maintained at a distance of a few hundreds of micrometers. Electrons experience low-frequency spiral rotation and high-frequency betatron oscillation, which leads to a synchrotron-like radiation. The radiation spectrum is mainly determined by the betatron motion of electrons. The far field distribution of radiation intensity shows axial symmetry due to the uniform transverse injection and spiral rotation of electrons. Our studies suggest a new way to simultaneously generate hollow electron beam and radiation source from a compact laser plasma accelerator.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774039)the Basic Research Program of Education Bureau of Henan Province of China(Grant No.072300410130)
文摘Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher principal quantum number by exposing them to specially designed frequency-chirped laser pulses. The population transfer from n=70 to n=75 states of lithium atoms with efficiency more than 90% is achieved by means of the sequential adiabatic rapid passages. The results agree well with the experimental ones and show that the coherent control of the population transfer from the lower n to the higher n states can be accomplished by the optimization of the chirping parameters and the intensity of laser field.
文摘This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations. The half space is con-sidered to be made of an isotropic homogeneous thermoelastic material. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 2 ps. An exact solution of the problem is first obtained in Laplace transform space. Since the response is of more interest in the transient state, the inversion of Laplace transforms have been carried numerically. The derived expressions are computed numerically for copper and the results are presented in graphical form.
文摘Based on the theory of the pulsed photoacoustic signal in liquid generated by a pulsed laser, a novel, optically noncontact, fast and accurate method for temperature-dependent ultrasonic velocities for ethanol and water has been demonstrated. The experiment results are in good agreemerit with literature values.
基金This work was supported by the Natioilal Natural Sicence Foundation of China(No.69978015 and 69987002)and the Tianjin Educational Committee Foundation of China(No。020623)
文摘An optical ultra-short pulse train with a duration of 2.9 ps was successfully generated from a passively mode-locked laser diode. The time-bandwidth product was 0.43, and it was very close to the transform-limited value of a Gaussian waveform. The highest peak power of 10 mW in an InP-based passively mode-locked laser has been achieved. The laser is promisng as an optical source for an ultra-high-speed bit rate transmission system, especially for the optical time division multiplexing (OTDM) system.