期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
1
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
下载PDF
A Novel Localized Meshless Method for Solving Transient Heat Conduction Problems in Complicated Domains
2
作者 Chengxin Zhang Chao Wang +1 位作者 Shouhai Chen Fajie Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2407-2424,共18页
This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by... This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology. 展开更多
关键词 Local knot method transient heat conduction dual reciprocity method meshless method
下载PDF
A new complex variable meshless method for transient heat conduction problems 被引量:5
3
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期42-50,共9页
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres... In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper. 展开更多
关键词 meshless method improved complex variable moving least-square approximation com-plex variable meshless method transient heat conduction problem
原文传递
Theoretical solution of transient heat conduction problem in one-dimensional double-layer composite medium 被引量:2
4
作者 周龙 白敏丽 +1 位作者 吕继组 崔文政 《Journal of Central South University》 SCIE EI CAS 2010年第6期1403-1408,共6页
To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to ... To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to dimensionless forms. Then, a theoretical solution model of transient heat conduction problem in one-dimensional double-layer composite medium was built utilizing the natural eigenfunction expansion method. In order to verify the validity of the model, the results of the above theoretical solution were compared with those of finite element method. The results by the two methods are in a good agreement. The maximum errors by the two methods appear when τ(τ is nondimensional time) equals 0.1 near the boundaries of ζ =1 (ζ is nondimensional space coordinate) and ζ =4. As τ increases, the error decreases gradually, and when τ =5 the results of both solutions have almost no change with the variation of coordinate 4. 展开更多
关键词 composite medium transient heat conduction theoretical solution natural eigenfunction expansion method
下载PDF
Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems 被引量:2
5
作者 陈丽 马和平 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期67-74,共8页
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho... In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method. 展开更多
关键词 complex variable reproducing kernel particle method finite element method combined method transient heat conduction
原文传递
Hybrid graded element model for transient heat conduction in functionally graded materials 被引量:4
6
作者 Lei-Lei Cao Qing-Hua Qin Ning Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期128-139,共12页
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f... This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method. 展开更多
关键词 Graded element model Functionally graded materials Hybrid FEM transient heat conduction
下载PDF
A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids 被引量:3
7
作者 李庆华 陈莘莘 曾骥辉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期51-57,共7页
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry ... A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach. 展开更多
关键词 meshless method transient heat conduction problem axisymmetric functionally graded materials natural neighbor interpolation
原文传递
An analytic model for transient heat conduction in bi-layered structures with flexible serpentine heaters
8
作者 Zhao ZHAO Yuhang LI +2 位作者 Sujun DONG Yi CUI Zheng DAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1279-1296,共18页
Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heati... Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heating film is proposed with the flexible serpentine wire embedded in the soft polymer film,which can be attached to non-developable surfaces conformally.It provides a new way for the stretchable heaters to realize uniform heating of complex surfaces.However,the thermal field of flexible serpentine heaters(FSHs)depends on the configurations of the embedded serpentine heating wire,which requires accurate theoretical prediction of real-time temperature distribution.Therefore,the analytical model for the transient heat conduction in FSHs is solved by the separation of variables method and validated by the finite element analysis(FEA)in this paper.Based on this model,the effects of the geometric parameters,such as the radius and the length of the serpentine heaters,on the thermal uniformity are systematically investigated.This study can help to design and fabricate flexible heaters with uniform heating in the future. 展开更多
关键词 serpentine heater bi-layered structure transient heat conduction temperature distribution
下载PDF
A Novel Meshfree Analysis of Transient Heat Conduction Problems Using RRKPM
9
作者 Hongfen Gao Gaofeng Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1793-1814,共22页
By introducing the radial basis functions(RBFs)into the reproducing kernel particle method(RKPM),the calculating accuracy and stability of the RKPM can be improved,and a novel meshfree method of the radial basis RKPM(... By introducing the radial basis functions(RBFs)into the reproducing kernel particle method(RKPM),the calculating accuracy and stability of the RKPM can be improved,and a novel meshfree method of the radial basis RKPM(meshfree RRKPM)is proposed.Meanwhile,the meshfree RRKPM is applied to transient heat conduction problems(THCP),and the corresponding equations of the meshfree RRKPM for the THCP are derived.The twopoint time difference scheme is selected to discretize the time of the THCP.Finally,the numerical results illustrate the effectiveness of the meshfree RRKPM for the THCP. 展开更多
关键词 transient heat conduction meshfree method reproducing kernel particle method meshfree RRKPM two-point difference method
下载PDF
An improved local radial point interpolation method for transient heat conduction analysis
10
作者 王峰 林皋 +1 位作者 郑保敬 胡志强 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期127-134,共8页
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the ... The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions. 展开更多
关键词 thin plate splines transient heat conduction penalty function method local radial point interpolation method
原文传递
A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
11
作者 王启防 戴保东 栗振锋 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期238-244,共7页
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ... On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless localPetrov-Galerkin method transient heat conduction problems
原文传递
The improved element-free Galerkin method for three-dimensional transient heat conduction problems 被引量:20
12
作者 ZHANG Zan WANG JianFei +1 位作者 CHENG YuMin LIEW Kim Meow 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第8期1568-1580,共13页
With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS a... With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS approximation leads to the development of the improved element-free Galerkin (IEFG) method. In this paper, the IEFG method is applied to study the partial differential equations that control the heat flow in three-dimensional space. With the IEFG technique, the Galerkin weak form is employed to develop the discretized system equations, and the penalty method is applied to impose the essential boundary conditions. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the transient heat conduction equations and the boundary and initial conditions are time dependent, the scaling parameter, number of nodes and time step length are considered in a convergence study. 展开更多
关键词 weighted orthogonal function improved moving least-squares (IMLS) approximation improved element-free Galerkin (IEFG) method penalty method transient heat conduction
原文传递
A High Order Control Volume Finite Element Method for Transient Heat Conduction Analysis of Multilayer Functionally Graded Materials with Mixed Grids 被引量:2
13
作者 LIU Qi MING Pingjian +1 位作者 ZHAO Haiyang ZHANG Wenping 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第1期144-158,共15页
This paper describes a new two-dimensional(2-D)control volume finite element method(CV-FEM)for transient heat conduction in multilayer functionally graded materials(FGMs).To deal with the mixed-grid problem,9-node qua... This paper describes a new two-dimensional(2-D)control volume finite element method(CV-FEM)for transient heat conduction in multilayer functionally graded materials(FGMs).To deal with the mixed-grid problem,9-node quadrilateral grids and 6-node triangular grids are used.The unknown temperature and material properties are stored at the node.By using quadratic triangular grids and quadratic quadrilateral grids,the present method offers greater geometric flexibility and the potential for higher accuracy than the linear CV-FEM.The properties of the FGMs are described by exponential,quadratic and trigonometric grading functions.Some numerical tests are studied to demonstrate the performance of the developed method.First,the present CV-FEM with mixed high-order girds provides a higher accuracy than the linear CV-FEM based on the same grid size.Second,the material properties defined location is proved to have a significant effect on the accuracy of the numerical results.Third,the present method provides better numerical solutions than the conventional FEM for the FGMs in conjunction with course high-order grids.Finally,the present method is also capable of analysis of transient heat conduction in multilayer FGM. 展开更多
关键词 finite volume method functionally graded materials transient heat conduction
原文传递
Transient heat conduction analysis using the NURBS-enhanced scaled boundary finite element method and modified precise integration method 被引量:3
14
作者 Gao Lin Peng Li +1 位作者 Jun Liu Pengchong Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第5期445-464,共20页
The Non-uniform rational B-spline (NURBS) enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this pap... The Non-uniform rational B-spline (NURBS) enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this paper. The scaled boundary finite element method is a semi-analytical technique, which weakens the governing differential equations along the circumferential direction and solves those analytically in the radial direction. In this method, only the boundary is discretized in the finite element sense leading to a re- duction of the spatial dimension by one with no fundamental solution required. Neverthe- less, in case of the complex geometry, a huge number of elements are generally required to properly approximate the exact shape of the domain and distorted meshes are often un- avoidable in the conventional finite element approach, which leads to huge computational efforts and loss of accuracy. NURBS are the most popular mathematical tool in CAD industry due to its flexibility to fit any free-form shape. In the proposed methodology, the arbitrary curved boundary of problem domain is exactly represented with NURBS basis functions, while the straight part of the boundary is discretized by the conventional Lagrange shape functions. Both the concepts of isogeometric analysis and scaled boundary finite element method are combined to form the governing equations of transient heat conduction analy- sis and the solution is obtained using the modified precise integration method. The stiffness matrix is obtained from a standard quadratic eigenvalue problem and the mass matrix is determined from the low-frequency expansion. Finally the governing equations become a system of first-order ordinary differential equations and the time domain response is solved numerically by the modified precise integration method. The accuracy and stability of the proposed method to deal with the transient heat conduction problems are demonstrated by numerical examples. 展开更多
关键词 transient heat conduction analysisScaled boundary finite elementmethodNURBSIsogeometric analysisModified precise integration method
原文传递
Finite Element Method Formulation in Polar Coordinates for Transient Heat Conduction Problems 被引量:1
15
作者 Piotr Duda 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第2期188-194,共7页
The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method(F... The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method(FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method. 展开更多
关键词 FEM polar coordinate system numerical methods transient heat conduction power boilers
原文传递
Improved Particle Swarm Optimization for Solving Transient Nonlinear Inverse Heat Conduction Problem in Complex Structure
16
作者 ZHOU Ling ZHANG Chunyun +2 位作者 BAI Yushuai LIU Kun CUI Miao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期816-828,共13页
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati... Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified. 展开更多
关键词 improved particle swarm optimization transient nonlinear heat conduction problem inverse identification finite element method complex structure
下载PDF
Transient Monte Carlo simulation of phonon transport in silicon nanofilms with the local heat source
17
作者 LI JiaQi CAI JiuQing +2 位作者 LI Rui LIU ZhiChun LIU Wei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第7期2087-2098,共12页
Accurate prediction of junction temperature is crucial for the efficient thermal design of silicon nano-devices. In nano-scale semiconductor devices, significant ballistic effects occur due to the mean free path of ph... Accurate prediction of junction temperature is crucial for the efficient thermal design of silicon nano-devices. In nano-scale semiconductor devices, significant ballistic effects occur due to the mean free path of phonons comparable to the heat source size and device scale. We employ a three-dimensional non-gray Monte Carlo simulation to investigate the transient heat conduction of silicon nanofilms with both single and multiple heat sources. The accuracy of the present method is first verified in the ballistic and diffusion limits. When a single local heat source is present, the width of the heat source has a significant impact on heat conduction in the domain. Notably, there is a substantial temperature jump at the boundary when the heat source width is 10 nm.With increasing heat source width, the boundary temperature jump weakens. Furthermore, we observe that the temperature excitation rate is independent of the heat source width, while the temperature influence range expands simultaneously with the increase in heat source width. Around 500 ps, the temperature and heat flux distribution in the domain stabilize. In the case of dual heat sources, the hot zone is broader than that of a single heat source, and the temperature of the hot spot decreases as the heat source spacing increases. However, the mean heat flux remains unaffected. Upon reaching a spacing of 200 nm between the heat sources, the peak temperature in the domain remains unchanged once a steady state is reached. These findings hold significant implications for the thermal design of silicon nano-devices with local heat sources. 展开更多
关键词 phonon transport Monte Carlo simulation transient heat conduction silicon nanofilms local heat source
原文传递
Deflection of transient thermoelastic circular plate by Marchi-Zgrablich and Laplace integral transform technique
18
作者 Badrinath E.Ghonge Kirtiwant P.Ghadle 《Theoretical & Applied Mechanics Letters》 2012年第2期19-22,共4页
This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi... This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007. 展开更多
关键词 circular plate transient heat conduction thermal deflection problem Marchi-Zgrablich Laplace integral transform
下载PDF
NUMERICAL METHOD OF MIXED FINITE VOLUME-MODIFIED UPWIND FRACTIONAL STEP DIFFERENCE FOR THREE-DIMENSIONAL SEMICONDUCTOR DEVICE TRANSIENT BEHAVIOR PROBLEMS 被引量:5
19
作者 袁益让 杨青 +1 位作者 李长峰 孙同军 《Acta Mathematica Scientia》 SCIE CSCD 2017年第1期259-279,共21页
Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi... Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device. 展开更多
关键词 three dimensional transient behavior of heat conduction problem mixed finitevolume element modified upwind fractional step difference second-order error
下载PDF
Comparison of CS,CGM and CS-CGM for Prediction of Pipe’s Inner Surface in FGMs 被引量:1
20
作者 Haolong Chen Bo Yu +1 位作者 Huanlin Zhou Zeng Meng 《Computers, Materials & Continua》 SCIE EI 2017年第4期271-290,共20页
The cuckoo search algorithm(CS)is improved by using the conjugate gradient method(CGM),and the CS-CGM is proposed.The unknown inner boundary shapes are generated randomly and evolved by Lévy flights and eliminati... The cuckoo search algorithm(CS)is improved by using the conjugate gradient method(CGM),and the CS-CGM is proposed.The unknown inner boundary shapes are generated randomly and evolved by Lévy flights and elimination mechanism in the CS and CS-CGM.The CS,CGM and CS-CGM are examined for the prediction of a pipe’s inner surface.The direct problem is two-dimensional transient heat conduction in functionally graded materials(FGMs).Firstly,the radial integration boundary element method(RIBEM)is applied to solve the direct problem.Then the three methods are compared to identify the pipe’s inner surface with the information of measured temperatures.Finally,the influences of timepoints,measurement point number and random noise on the inverse results are investigated.It is found that the three algorithms are promising and can be used to identify the pipe’s inner surface.The CS-CGM has higher accuracy and faster convergence speed than the CS and CGM.The CS and CS-CGM are insensitive to the initial values.The CGM and CS-CGM are more insensitive to the measurement noises compared with the CS.With the increase of timepoints and measurement points,and with the decrease of measurement noises,the inverse results are more accurate. 展开更多
关键词 Inverse geometry problems transient heat conduction functionally graded materials Cuckoo search algorithm conjugate gradient method
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部