A recent study by Liu et al.(2020)suggested that due to the saturation of equatorially trapped planetary waves with different dynamical types,temporal periods,meridional and baroclinic modes,complex layer structures o...A recent study by Liu et al.(2020)suggested that due to the saturation of equatorially trapped planetary waves with different dynamical types,temporal periods,meridional and baroclinic modes,complex layer structures of vertical velocity shear and hence turbulent mixing could frequently occur in the thermocline of the eastern equatorial Pacific.We investigated the occurrence of the interior turbulent mixing as indicated by shear instabilities,above the Equatorial Undercurrent(EUC)core at three equatorial sites along 140°W,170°W,and 165°E,respectively,based mainly on data from the Tropical Atmosphere and Ocean(TAO)mooring array.We found that turbulent mixing bursts persisted in the thermocline of all three sites.Specifically,the interior turbulent mixing layers(ITMLs)could occur in probability of approximately 68%,53%,and 48%at the three sites,respectively.The overall occurrence probability shows obvious and similar biannual variations at 140°W and 170°W,which is higher in boreal from late summer to winter and lower in spring.Vertically,the ITMLs are primarily located above the EUC core and prevail in deeper(shallower)layers from late summer to winter(spring).Most ITMLs(70%)lasted for hours to 3 days,and a few of them(15%)for more than 7 days.The thicknesses of ITMLs were concentrated between 15 and 55 m.At 165°E,the vertical distribution of ITML occurrence probability was different from that at 140°W and 170°W,as it did not show a preference for depths;the durations of ITMLs are short(also from hours to several days)and their thicknesses were between 5 and 25 m.These properties,particularly the high occurrence probability,and short durations demonstrated the persistence of thermocline mixing in the western to eastern equatorial Pacific thermocline and confirmed the generation mechanism by persistent equatorial waves as well.展开更多
Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were ...Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were used to determine the characteristics of water masses,turbulent mixing,and flows in the Preparis Channel.The unprecedented short-term mooring data reveal that a deep current in the deep narrow passage(below 400 m)of the Preparis Channel flows toward the Bay of Bengal(BoB)with a mean along-stream velocity of 25.26 cm/s at depth of 540 m;above the deep current,there are a relatively weak current flows toward the AS with a mean along-stream velocity of 15.46 cm/s between 500 m and 520 m,and another weak current flows toward the BoB between 430 m and 500 m.Thus,a sandwiched vertical structure of deep currents(below 400 m)is present in the Preparis Channel.The volume transport below 400 m is 0.06 Sv(1 Sv=106 m^(3)/s)from the AS to the BoB.In the upper layer(shallower than 300 m),the sea water of the AS is relatively warmer and fresher than that in the BoB,indicating a strong exchange through the channel.Microstructure profiler observations reveal that the turbulent diffusivity in the upper layer of the Preparis Channel reaches O(10−4 m^(2)/s),one order larger than that in the interior of the BoB and over the continental slope of the northern AS.We speculate that energetic high-mode internal tides in the Preparis Channel contribute to elevated turbulent mixing.In addition,a local“hotspot”of turbidity is identified at the deep mooring site,at depth of about 100 m,which corresponds to the location of elevated turbulent mixing in the Preparis Channel.展开更多
Upper turbulent mixing in the interior and surrounding areas of an anticyclonic eddy in the northern South China Sea(SCS)was estimated from underwater glider data(May 2015)in the present study,using the Gregg-HenyeyPo...Upper turbulent mixing in the interior and surrounding areas of an anticyclonic eddy in the northern South China Sea(SCS)was estimated from underwater glider data(May 2015)in the present study,using the Gregg-HenyeyPolzin parameterization and the Thorpe-scale method.The observations revealed a clear asymmetrical spatial pattern of turbulent mixing in the anticyclonic eddy area.Enhanced diffusivity(in the order of 10–3 m2/s)was found at the posterior edge of the anticyclonic mesoscale eddy;on the anterior side,diffusivity was one order of magnitude lower on average.This asymmetrical pattern was highly correlated with the eddy kinetic energy.Higher shear variance on the posterior side,which is conducive to the triggering of shear instability,may be the main mechanism for the elevated diffusivity.In addition,the generation and growth of sub-mesoscale motions that are fed by mesoscale eddies on their posterior side may also promote the occurrence of strong mixing in the studied region.The results of this study help improve our knowledge regarding turbulent mixing in the northern SCS.展开更多
In this paper, we present measurements of velocity, temperature, salinity, and turbulence collected in Prydz Bay, Antarctica, during February, 2005. The dissipation rates of turbulent kinetic energy (e) and diapycna...In this paper, we present measurements of velocity, temperature, salinity, and turbulence collected in Prydz Bay, Antarctica, during February, 2005. The dissipation rates of turbulent kinetic energy (e) and diapycnal diffusivities (Ks) were estimated along a section in front of the Amery Ice Shelf. The dissipation rates and diapycnal diffusivities were spatially non-uniform, with higher values found in the western half of the section where E reached 10.7 W/kg and Kz reached 10.2 mVs, about two and three orders of magnitude higher than those in the open ocean, respectively. In the western half of the section both the dissipation rates and diffusivities showed a high-low-high vertical structure. This vertical structure may have been determined by internal waves in the upper layer, where the ice shelf draft acts as a possible energy source, and by bottom-generated internal waves in the lower layer, where both tides and geostrophic currents are possible energy sources. The intense diapycnal mixing revealed in our observations could contribute to the production of Antarctic Bottom Water in Prydz Bay.展开更多
A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order...A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order of magnitude larger than that in the open ocean at that low latitude. Enhanced eddy diffusivities by strong shears and sharp changes in topography were observed. The strongest eddy diffusivity occurred in the mixed layer, and it reached O(10^-2 m^2/s). Strong stratification in the thermocline inhibited the penetration of surface eddy diffusivities through the thermocline, where the mixing was weakest. Below the thermocline, where the background eddy diffusivity was approximately O(10^-6 m^2/s), the eddy diffusivity increased with depth, and its largest value was O(10^-3 m^2/s).展开更多
The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in...The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity Kρ is O(10–6 m2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to Kρ≈O(10–4 m2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.展开更多
Based on field hydrological,microstructural,and shipboard Acoustic Doppler Current Profiler data,we quantified the spatial and temporal variability of turbulent mixing in the near-field Changjiang(Yangtze)River plume....Based on field hydrological,microstructural,and shipboard Acoustic Doppler Current Profiler data,we quantified the spatial and temporal variability of turbulent mixing in the near-field Changjiang(Yangtze)River plume.The surface dissipation rate(ε)changed by three orders of magnitude from near-field(10^-4 W/kg)to far-field(10^-7 W/kg)plumes,indicating a decrease with distance from the river mouth.Below the river plume,εchanged with depth to 10^-8 W/kg,and increased to 10^-6 W/kg at the layer where the Taiwan Warm Current(TWC)intruded.Thus,εin the near-field plume showed three layers:surface layer in the river plume,middle layer,and lower TWC layer.In the river plume,the strongestεand turbulent diffusivity(Kz)were greater than 10^-4 W/kg and 10^-2 m^2/s,respectively,during strong ebb tides.A three-orders-of-magnitude change inεand Kz was observed in the tidal cycle.The depth of the halocline changed with tidal cycles,and stratification(N 2)varied by one order of magnitude.Stratification in the TWC layer followed the distribution of the halocline,which is opposite to the dissipation structure.Tidal currents led to intrusion and turbulent mixing in the TWC layer.During ebb tides,εand Kz were as strong as those measured in the river plume,but did not last as long.The structure of the velocity shear was similar to the dissipation rate in both the river plume and TWC layer,whereas the velocity shear in the TWC layer did not match the stratification structure.In the high dissipation rate area,the gradient Richardson number was smaller than the critical value(Ri g<1/4).The Ri g structure was consistent with shear and dissipation distributions,indicating that turbulent mixing in the near-field plume was controlled by a combination of shear induced by the discharged river flow and tidal current.展开更多
Traffic-related pollutants adversely affect air quality, especially in regions near major roadways. The vehicleinduced turbulence(VIT) is a significant factor that controls the initial dilution, dispersion, and ultima...Traffic-related pollutants adversely affect air quality, especially in regions near major roadways. The vehicleinduced turbulence(VIT) is a significant factor that controls the initial dilution, dispersion, and ultimately the chemical and physical fate of pollutants by altering the conditions in the microenvironment. This study used a computational fluid dynamics(CFD) software FLUENT to model the vehicle-induced turbulence(VIT) generated on roadways, with a focus on impact of vehicle-vehicle interactions, traffic density and vehicle composition on turbulent kinetic energy(TKE). We show, for the first time, that the overall TKE from multiple vehicles traveling in series can be estimated by superimposing the TKE of each vehicle, without considering the distance between them while the distance is greater than one vehicle length. This finding is particularly significant since it enables a new approach to VIT simulations where the overall TKE is calculated as a function of number of vehicles. We found that the interactions between vehicles traveling next to each other in adjacent lanes are insignificant,regardless the directions of the traffic flow. Consequently, simulations of different traffic scenarios can be substantially simplified by treating two-way traffic as one-way traffic, with less than 5% difference in the overall volume-averaged TKE. We also developed equations that allow the estimation of the overall volume-averaged TKE as a function of the number and the type of vehicles.展开更多
A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commer...A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commercial T-junctions and steel micro-capillaries. Both of operating parameters and reactor configurations,such as jet Reynolds number(Rej), volumetric flow ratio(R), the first-stage junction angle(φ), the connecting capillary length(Lc) and connecting capillary diameter(dc), had significant effects on the micromixing efficiency of the reactor. Such effects were investigated for both of the two stage structures, respectively, by experimental and CFD methods and were optimized for the best micromixing performance. Intensified micromixing among at least three reacting components can be achieved in a continuous mode by using TS-MISR; therefore, it is expected that the TS-MISR will produce products of higher quality with more uniform and stable element distribution.展开更多
Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half cen...Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half century, a huge amount of data and knowledge has been accumulated from theoretical and experimental studies on micromixing. Nevertheless, those results are mostly composites of simplified theoretical and empirical models, and the true nature of interactions of flow inhomogeneity and micro-mixing with chemical reaction has not been fully unveiled. This article reviews the progress in micro-mixing study in chemical reactors to date. A few important topics related to the nature, experimental evaluation, and numerical simulation of micro-mixing are addressed.Some suggestions are given hopefully to motivate more chemical engineers to devote their efforts to better understanding of micro-mixing in chemical reactors.展开更多
Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal wav...Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.展开更多
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline str...Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10^(-7))-O(10^(-6)) W/kg and O(10^(-3))-O(10^(-2)) m^2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10^(-8)) to O(10^(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10^(-6)) to O(10^(-5)) m^2/s.In the marginal ice zone,K is vertically stable with the order of10^(-4) m^2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.展开更多
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flow...Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-turbulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent-mixing-rates toward the sea surface so that the submerged waste-field could be detected from a space satellite (Bondur and Filatov, 2003).展开更多
We present observations from deployments of turbulent microstructure instrument and CTD package in the northern South China Sea from April to May 2010.From them we determined the turbulent mixing(dissipation rateεand...We present observations from deployments of turbulent microstructure instrument and CTD package in the northern South China Sea from April to May 2010.From them we determined the turbulent mixing(dissipation rateεand diapycnal diffusivityκ),nutrients(phosphate,nitrate,and nitrite),nutrient fluxes,and chlorophyll a in two transects(A and B).Transect A was located in the region where turbulent mixing in the upper 100 m was weak(κ~10-6-10-4 m^(2)/s).Transect B was located in the region where the turbulent mixing in the upper 100 m was strong(κ~10-5-10-3 m^(2)/s)due to the influence of internal waves originating from the Luzon Strait and water intrusion from the Western Pacific.In both transects,there was a thin subsurface chlorophyll maximum layer(SCML)(>0.25 mg/m^(3))nested in the upper 100 m.The observations indicate that the effects of turbulent mixing on the distributions of nutrients and chlorophyll a were different in the two transects.In the transect A with weak turbulent mixing,nutrient fluxes induced by turbulent mixing transported nutrients to the SCML but not to the upper water.Nutrients were sufficient to support a local SCML phytoplankton population and the SCML remained compact.In the transect B with strong turbulent mixing,nutrient fluxes induced by turbulent mixing transported nutrients not only to the SCML but also to the upper water,which scatters the nutrients in the water column and diffuses the SCML.展开更多
Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf...Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf were dominated by the barotropic tide with the current ellipse stretched across the shelf,significant internal tides were observed on the slope.The depth-mean turbulent kinetic energy(TKE)dissipation rate on the shelf was 10^-6W kg^-1,corresponding to a diapycnal diffusivity of 10^-2 m^2s^-1.The depth-mean TKE dissipation rate on the slope was 1×10^-7 Wkg^-1,with diapycnal diffusivity of 3×10^-4m^2s^-1.The shear instability associated with internal tides largely contributed to the TKE dissipation rate on the slope from the surface to 150 m,while the enhanced turbulence on the shelf was dominated by tidal or residual current dissipations caused by friction in the thick bottom boundary layer(BBL).In the BBL,the Ekman currents associated with the northeastward Taiwan Warm Current were identified,showing a near-bottom velocity spiral,which agreed well with the analytical bottom Ekman solution.展开更多
In order to understand the wave-turbulence interaction under non-hydrostatic conditions to prepare future ad-vanced very-high-resolution ocean reanalysis data,an𝜎-coordinate ocean model-namely,the Marine Envir...In order to understand the wave-turbulence interaction under non-hydrostatic conditions to prepare future ad-vanced very-high-resolution ocean reanalysis data,an𝜎-coordinate ocean model-namely,the Marine Environ-ment Research and Forecasting(MERF)model-with an idealized supercritical slope topography is applied to conduct a series of high-resolution numerical experiments with and without the non-hydrostatic approximation.The popular Mellor-Yamada two-equation turbulence model(MY2.5)is enclosed in MERF to validate its effect on small-scale internal lee waves.Instantaneous results show that the internal lee-wave processes are relaxed through employment of the MY2.5 scheme,whether or not in the non-hydrostatic model.Time averaged results suggest the influences of the vertical mixing parameterization scheme on the numerical results are more dominant than the non-hydrostatic/hydrostatic selection for the large-scale dynamic process.Besides,diagnostic analyses of the energy budget show that the spread of internal lee waves at the slope is dramatically suppressed by the vertical turbulent mixing,indicating more tidal energy is able to be converted into the irreversible mixing when the two-equation turbulence model is employed.展开更多
The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing lay...The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.展开更多
Fluid mixing is an important phenomenon in many physical applications from supernova explosions to genetic structure formations. In this paper, we overview some theoretical and empirical dynamic mix models, which have...Fluid mixing is an important phenomenon in many physical applications from supernova explosions to genetic structure formations. In this paper, we overview some theoretical and empirical dynamic mix models, which have been developed over the recent decades, in particular, the ensemble-average micro physical mix model, the multifluid interpenetration mix model, the phenomenological and hybrid turbulent mix models, the buoyancy drag mix model, the single fluid turbulence mix model, and the large eddy simulation mix model. The similarities, distinctions, and connections between these models and their applications are discussed.展开更多
The paper presents the k-ε model equations of turbulence with a single set of constants chosen by the authors, which is appropriate to simulate a wide range of turbulent flows. The model validation has been performed...The paper presents the k-ε model equations of turbulence with a single set of constants chosen by the authors, which is appropriate to simulate a wide range of turbulent flows. The model validation has been performed for a number of flows and its main results are given in the paper. The turbulent mixing of flow with shear in the tangential velocity component is discussed in details. An analytical solution to the system of ordinary differential equations of the k-ε model of turbulent mixing has been found for the self-similar regime of flow. The model coefficients were chosen using simulation results for some simplest turbulent flows. The solution can be used for the verification of codes. The numerical simulation of the problem has been performed by the 2D code EGAK using this model. A good agreement of the numerical simulation results with the self-similar solution, 3D DNS results and known experimental data has been achieved. This allows stating that the k-ε model constants chosen by the authors are acceptable for the considered flow.展开更多
In spring preceding the record minimum summer ice cover detailed microstructure measurements were made from drifting pack ice in the Arctic Ocean, 110 km from the North Pole. Profiles of hydrography, shear, and temper...In spring preceding the record minimum summer ice cover detailed microstructure measurements were made from drifting pack ice in the Arctic Ocean, 110 km from the North Pole. Profiles of hydrography, shear, and temperature microstructure collected in the upper water column covering the core of the Atlantic Water are analyzed to determine the diapycnal eddy diffusivity, the eddy diffusivity for heat, and the turbulent flux of heat. Turbulence in the bulk of the cold halocline layer was not strong enough to generate significant buoyancy flux and mixing. Resulting turbulent heat flux across the upper cold halocline was not significantly different than zero. The results show that the low levels of eddy diffusivity in the upper cold halocline lead to small vertical turbulent transport of heat, thereby allowing the maintenance of the cold halocline in the central Arctic.展开更多
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41730534)the Laoshan Laboratory Science and Technology Innovation Program(No.LSKJ 202202502)+1 种基金the NSFC(Nos.41976012,42090044)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB42000000)。
文摘A recent study by Liu et al.(2020)suggested that due to the saturation of equatorially trapped planetary waves with different dynamical types,temporal periods,meridional and baroclinic modes,complex layer structures of vertical velocity shear and hence turbulent mixing could frequently occur in the thermocline of the eastern equatorial Pacific.We investigated the occurrence of the interior turbulent mixing as indicated by shear instabilities,above the Equatorial Undercurrent(EUC)core at three equatorial sites along 140°W,170°W,and 165°E,respectively,based mainly on data from the Tropical Atmosphere and Ocean(TAO)mooring array.We found that turbulent mixing bursts persisted in the thermocline of all three sites.Specifically,the interior turbulent mixing layers(ITMLs)could occur in probability of approximately 68%,53%,and 48%at the three sites,respectively.The overall occurrence probability shows obvious and similar biannual variations at 140°W and 170°W,which is higher in boreal from late summer to winter and lower in spring.Vertically,the ITMLs are primarily located above the EUC core and prevail in deeper(shallower)layers from late summer to winter(spring).Most ITMLs(70%)lasted for hours to 3 days,and a few of them(15%)for more than 7 days.The thicknesses of ITMLs were concentrated between 15 and 55 m.At 165°E,the vertical distribution of ITML occurrence probability was different from that at 140°W and 170°W,as it did not show a preference for depths;the durations of ITMLs are short(also from hours to several days)and their thicknesses were between 5 and 25 m.These properties,particularly the high occurrence probability,and short durations demonstrated the persistence of thermocline mixing in the western to eastern equatorial Pacific thermocline and confirmed the generation mechanism by persistent equatorial waves as well.
基金The Global Change and Air-Sea Interaction II Project under contract Nos GASI-01-EIND-STwin and GASI-04-WLHY-03the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources under contract No.JB2106+2 种基金the Global Change and Air-Sea Interaction II Project under contract No.GASI-04-WLHY-01the Leading Talents of Science and Technology Innovation in the Zhejiang Provincial Ten Thousand Talents Program under contract No.2020R52038the Oceanic Sustainability-Based Marine Science and Technology Cooperation in Maritime Silk Road and Island Countries.
文摘Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were used to determine the characteristics of water masses,turbulent mixing,and flows in the Preparis Channel.The unprecedented short-term mooring data reveal that a deep current in the deep narrow passage(below 400 m)of the Preparis Channel flows toward the Bay of Bengal(BoB)with a mean along-stream velocity of 25.26 cm/s at depth of 540 m;above the deep current,there are a relatively weak current flows toward the AS with a mean along-stream velocity of 15.46 cm/s between 500 m and 520 m,and another weak current flows toward the BoB between 430 m and 500 m.Thus,a sandwiched vertical structure of deep currents(below 400 m)is present in the Preparis Channel.The volume transport below 400 m is 0.06 Sv(1 Sv=106 m^(3)/s)from the AS to the BoB.In the upper layer(shallower than 300 m),the sea water of the AS is relatively warmer and fresher than that in the BoB,indicating a strong exchange through the channel.Microstructure profiler observations reveal that the turbulent diffusivity in the upper layer of the Preparis Channel reaches O(10−4 m^(2)/s),one order larger than that in the interior of the BoB and over the continental slope of the northern AS.We speculate that energetic high-mode internal tides in the Preparis Channel contribute to elevated turbulent mixing.In addition,a local“hotspot”of turbidity is identified at the deep mooring site,at depth of about 100 m,which corresponds to the location of elevated turbulent mixing in the Preparis Channel.
基金The National Key R&D Plan of China under contract Nos 2017YFC0305904,2017YFC0305804 and 2016YFC1401404the National Natural Science Foundation of China under contract Nos 41876023,41630970,41806037,41706137 and 41806033+4 种基金the Guangdong Science and Technology Project under contract Nos 2019A1515111044,2018A0303130047 and 2017A030310332the Guangzhou Science and Technology Project under contract No.201707020037the Natural Science Foundation of Shenzhen University under contract No.2019078the Dedicated Fund for Promoting High-quality Economic Development in Guangdong Province(Marine Economic Development Project)under contract No.GDOE2019A03the Independent Research Project Program of State Key Laboratory of Tropical Oceanography under contract Nos LTOZZ1902 and LTO1909。
文摘Upper turbulent mixing in the interior and surrounding areas of an anticyclonic eddy in the northern South China Sea(SCS)was estimated from underwater glider data(May 2015)in the present study,using the Gregg-HenyeyPolzin parameterization and the Thorpe-scale method.The observations revealed a clear asymmetrical spatial pattern of turbulent mixing in the anticyclonic eddy area.Enhanced diffusivity(in the order of 10–3 m2/s)was found at the posterior edge of the anticyclonic mesoscale eddy;on the anterior side,diffusivity was one order of magnitude lower on average.This asymmetrical pattern was highly correlated with the eddy kinetic energy.Higher shear variance on the posterior side,which is conducive to the triggering of shear instability,may be the main mechanism for the elevated diffusivity.In addition,the generation and growth of sub-mesoscale motions that are fed by mesoscale eddies on their posterior side may also promote the occurrence of strong mixing in the studied region.The results of this study help improve our knowledge regarding turbulent mixing in the northern SCS.
基金Supported by the National Natural Science Foundation of China(Nos.40906004,40890153,41176008,and 91028008)the National High Technology Research and Development Program of China(863 Program)(No.2008AA09A402)+2 种基金the Polar Science Strategic Foundation of China(No.20080206)the Key Lab Open Research Foundation of China(No.KP201006)the National Key Technology Research and Development Program of China(No.2006BAB18B02)
文摘In this paper, we present measurements of velocity, temperature, salinity, and turbulence collected in Prydz Bay, Antarctica, during February, 2005. The dissipation rates of turbulent kinetic energy (e) and diapycnal diffusivities (Ks) were estimated along a section in front of the Amery Ice Shelf. The dissipation rates and diapycnal diffusivities were spatially non-uniform, with higher values found in the western half of the section where E reached 10.7 W/kg and Kz reached 10.2 mVs, about two and three orders of magnitude higher than those in the open ocean, respectively. In the western half of the section both the dissipation rates and diffusivities showed a high-low-high vertical structure. This vertical structure may have been determined by internal waves in the upper layer, where the ice shelf draft acts as a possible energy source, and by bottom-generated internal waves in the lower layer, where both tides and geostrophic currents are possible energy sources. The intense diapycnal mixing revealed in our observations could contribute to the production of Antarctic Bottom Water in Prydz Bay.
基金The "CAS/SAFEA International Partnership Program for Creative Research Teams" of Chinese Academy of Seiences under contract Nos XDA11010202,2013CB430303 and 41376022,41276021 and 41276023
文摘A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order of magnitude larger than that in the open ocean at that low latitude. Enhanced eddy diffusivities by strong shears and sharp changes in topography were observed. The strongest eddy diffusivity occurred in the mixed layer, and it reached O(10^-2 m^2/s). Strong stratification in the thermocline inhibited the penetration of surface eddy diffusivities through the thermocline, where the mixing was weakest. Below the thermocline, where the background eddy diffusivity was approximately O(10^-6 m^2/s), the eddy diffusivity increased with depth, and its largest value was O(10^-3 m^2/s).
基金The National Natural Science Foundation of China under contract Nos 41476009,41776034 and 41476010the Natural Science Foundation of Guangdong Province of China under contract No.2016A030312004+1 种基金the Global Air-Sea Interaction Project of State Oceanic Administration under contract No.GASI-IPOVAI-01-02the Laboratory of Tropical Ocean Open Foundation under contract No.LT1404
文摘The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity Kρ is O(10–6 m2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to Kρ≈O(10–4 m2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.
基金the National Natural Science Foundation of China(NSFC)(No.41706012)the National Key Research and Development Program of China(No.2017YFC1403401)+1 种基金the National Natural Science Foundation of China(NSFC)Innovative Group Grant(No.41421005),the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020301)。
文摘Based on field hydrological,microstructural,and shipboard Acoustic Doppler Current Profiler data,we quantified the spatial and temporal variability of turbulent mixing in the near-field Changjiang(Yangtze)River plume.The surface dissipation rate(ε)changed by three orders of magnitude from near-field(10^-4 W/kg)to far-field(10^-7 W/kg)plumes,indicating a decrease with distance from the river mouth.Below the river plume,εchanged with depth to 10^-8 W/kg,and increased to 10^-6 W/kg at the layer where the Taiwan Warm Current(TWC)intruded.Thus,εin the near-field plume showed three layers:surface layer in the river plume,middle layer,and lower TWC layer.In the river plume,the strongestεand turbulent diffusivity(Kz)were greater than 10^-4 W/kg and 10^-2 m^2/s,respectively,during strong ebb tides.A three-orders-of-magnitude change inεand Kz was observed in the tidal cycle.The depth of the halocline changed with tidal cycles,and stratification(N 2)varied by one order of magnitude.Stratification in the TWC layer followed the distribution of the halocline,which is opposite to the dissipation structure.Tidal currents led to intrusion and turbulent mixing in the TWC layer.During ebb tides,εand Kz were as strong as those measured in the river plume,but did not last as long.The structure of the velocity shear was similar to the dissipation rate in both the river plume and TWC layer,whereas the velocity shear in the TWC layer did not match the stratification structure.In the high dissipation rate area,the gradient Richardson number was smaller than the critical value(Ri g<1/4).The Ri g structure was consistent with shear and dissipation distributions,indicating that turbulent mixing in the near-field plume was controlled by a combination of shear induced by the discharged river flow and tidal current.
基金financial support from Environment Canada and the Government of Ontario (72021622) for a scholarship to YK
文摘Traffic-related pollutants adversely affect air quality, especially in regions near major roadways. The vehicleinduced turbulence(VIT) is a significant factor that controls the initial dilution, dispersion, and ultimately the chemical and physical fate of pollutants by altering the conditions in the microenvironment. This study used a computational fluid dynamics(CFD) software FLUENT to model the vehicle-induced turbulence(VIT) generated on roadways, with a focus on impact of vehicle-vehicle interactions, traffic density and vehicle composition on turbulent kinetic energy(TKE). We show, for the first time, that the overall TKE from multiple vehicles traveling in series can be estimated by superimposing the TKE of each vehicle, without considering the distance between them while the distance is greater than one vehicle length. This finding is particularly significant since it enables a new approach to VIT simulations where the overall TKE is calculated as a function of number of vehicles. We found that the interactions between vehicles traveling next to each other in adjacent lanes are insignificant,regardless the directions of the traffic flow. Consequently, simulations of different traffic scenarios can be substantially simplified by treating two-way traffic as one-way traffic, with less than 5% difference in the overall volume-averaged TKE. We also developed equations that allow the estimation of the overall volume-averaged TKE as a function of the number and the type of vehicles.
基金Supported by the National Natural Science Foundation of China(Nos.21376015,21576012 and 91334206)
文摘A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commercial T-junctions and steel micro-capillaries. Both of operating parameters and reactor configurations,such as jet Reynolds number(Rej), volumetric flow ratio(R), the first-stage junction angle(φ), the connecting capillary length(Lc) and connecting capillary diameter(dc), had significant effects on the micromixing efficiency of the reactor. Such effects were investigated for both of the two stage structures, respectively, by experimental and CFD methods and were optimized for the best micromixing performance. Intensified micromixing among at least three reacting components can be achieved in a continuous mode by using TS-MISR; therefore, it is expected that the TS-MISR will produce products of higher quality with more uniform and stable element distribution.
基金Supported by the National Natural Science Foundation of China(21376243,91434126)National Key Research and Development Program(2016YFB0301702)+1 种基金the State Key Development Program for Basic Research of China(2012CB224806)Jiangsu National Synergetic Innovation Center for Advanced Materials
文摘Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half century, a huge amount of data and knowledge has been accumulated from theoretical and experimental studies on micromixing. Nevertheless, those results are mostly composites of simplified theoretical and empirical models, and the true nature of interactions of flow inhomogeneity and micro-mixing with chemical reaction has not been fully unveiled. This article reviews the progress in micro-mixing study in chemical reactors to date. A few important topics related to the nature, experimental evaluation, and numerical simulation of micro-mixing are addressed.Some suggestions are given hopefully to motivate more chemical engineers to devote their efforts to better understanding of micro-mixing in chemical reactors.
基金supported by the Key Program of the National Natural Science Foundation of China under contract No.41030855
文摘Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE-01-01and CHINARE-04-01
文摘Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10^(-7))-O(10^(-6)) W/kg and O(10^(-3))-O(10^(-2)) m^2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10^(-8)) to O(10^(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10^(-6)) to O(10^(-5)) m^2/s.In the marginal ice zone,K is vertically stable with the order of10^(-4) m^2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.
文摘Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-turbulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent-mixing-rates toward the sea surface so that the submerged waste-field could be detected from a space satellite (Bondur and Filatov, 2003).
基金Supported by the National Key R&D Program of China(No.2018YFA0902500)the National Natural Science Foundation of China(Nos.41706137,41806033,41876023)+5 种基金the Natural Science Foundation of Guangdong Province of China(No.2017A030310332)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTO1909)the Natural Science Foundation of SZU(Nos.2019078,860-000002110258)the Dedicated Fund for Promoting High-quality Economic Development in Guangdong Province(Marine Economic Development Project)(No.GDOE[2019]A03)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)the Independent Research Project Program of State Key Laboratory of Tropical Oceanography(No.LTOZZ1902)。
文摘We present observations from deployments of turbulent microstructure instrument and CTD package in the northern South China Sea from April to May 2010.From them we determined the turbulent mixing(dissipation rateεand diapycnal diffusivityκ),nutrients(phosphate,nitrate,and nitrite),nutrient fluxes,and chlorophyll a in two transects(A and B).Transect A was located in the region where turbulent mixing in the upper 100 m was weak(κ~10-6-10-4 m^(2)/s).Transect B was located in the region where the turbulent mixing in the upper 100 m was strong(κ~10-5-10-3 m^(2)/s)due to the influence of internal waves originating from the Luzon Strait and water intrusion from the Western Pacific.In both transects,there was a thin subsurface chlorophyll maximum layer(SCML)(>0.25 mg/m^(3))nested in the upper 100 m.The observations indicate that the effects of turbulent mixing on the distributions of nutrients and chlorophyll a were different in the two transects.In the transect A with weak turbulent mixing,nutrient fluxes induced by turbulent mixing transported nutrients to the SCML but not to the upper water.Nutrients were sufficient to support a local SCML phytoplankton population and the SCML remained compact.In the transect B with strong turbulent mixing,nutrient fluxes induced by turbulent mixing transported nutrients not only to the SCML but also to the upper water,which scatters the nutrients in the water column and diffuses the SCML.
基金sponsored by the National Basic Research Program of China (Ministry of Science and Technology)granted by the National Natural Science Foundation of China (Grant Nos. 41306003 and 41430963)+2 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. 0905-841313038, 1100841262028 and 0905-201462003)the China Postdoctoral Science Foundation (Grant No. 2013M531647)the Natural Science Foundation of Shandong (Grant No. BS2013HZ015)
文摘Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf were dominated by the barotropic tide with the current ellipse stretched across the shelf,significant internal tides were observed on the slope.The depth-mean turbulent kinetic energy(TKE)dissipation rate on the shelf was 10^-6W kg^-1,corresponding to a diapycnal diffusivity of 10^-2 m^2s^-1.The depth-mean TKE dissipation rate on the slope was 1×10^-7 Wkg^-1,with diapycnal diffusivity of 3×10^-4m^2s^-1.The shear instability associated with internal tides largely contributed to the TKE dissipation rate on the slope from the surface to 150 m,while the enhanced turbulence on the shelf was dominated by tidal or residual current dissipations caused by friction in the thick bottom boundary layer(BBL).In the BBL,the Ekman currents associated with the northeastward Taiwan Warm Current were identified,showing a near-bottom velocity spiral,which agreed well with the analytical bottom Ekman solution.
基金supported by the National Key Research and Development Program of China [grant number 2016YFC1401800]the National Programme on Global Change and Air-Sea Interaction of China [grant number GASI-IPOVAI-04]the National Natural Science Foundation of China [grant numbers 41876014 and 41606039]。
文摘In order to understand the wave-turbulence interaction under non-hydrostatic conditions to prepare future ad-vanced very-high-resolution ocean reanalysis data,an𝜎-coordinate ocean model-namely,the Marine Environ-ment Research and Forecasting(MERF)model-with an idealized supercritical slope topography is applied to conduct a series of high-resolution numerical experiments with and without the non-hydrostatic approximation.The popular Mellor-Yamada two-equation turbulence model(MY2.5)is enclosed in MERF to validate its effect on small-scale internal lee waves.Instantaneous results show that the internal lee-wave processes are relaxed through employment of the MY2.5 scheme,whether or not in the non-hydrostatic model.Time averaged results suggest the influences of the vertical mixing parameterization scheme on the numerical results are more dominant than the non-hydrostatic/hydrostatic selection for the large-scale dynamic process.Besides,diagnostic analyses of the energy budget show that the spread of internal lee waves at the slope is dramatically suppressed by the vertical turbulent mixing,indicating more tidal energy is able to be converted into the irreversible mixing when the two-equation turbulence model is employed.
基金Project supported by the National Natural Science Foundation of China(Nos.11402179 and11572274)
文摘The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.
基金performed under the auspices of the U.S. Department of Energyby the Los Alamos National Laboratory under contract number W-7405-ENG-36
文摘Fluid mixing is an important phenomenon in many physical applications from supernova explosions to genetic structure formations. In this paper, we overview some theoretical and empirical dynamic mix models, which have been developed over the recent decades, in particular, the ensemble-average micro physical mix model, the multifluid interpenetration mix model, the phenomenological and hybrid turbulent mix models, the buoyancy drag mix model, the single fluid turbulence mix model, and the large eddy simulation mix model. The similarities, distinctions, and connections between these models and their applications are discussed.
文摘The paper presents the k-ε model equations of turbulence with a single set of constants chosen by the authors, which is appropriate to simulate a wide range of turbulent flows. The model validation has been performed for a number of flows and its main results are given in the paper. The turbulent mixing of flow with shear in the tangential velocity component is discussed in details. An analytical solution to the system of ordinary differential equations of the k-ε model of turbulent mixing has been found for the self-similar regime of flow. The model coefficients were chosen using simulation results for some simplest turbulent flows. The solution can be used for the verification of codes. The numerical simulation of the problem has been performed by the 2D code EGAK using this model. A good agreement of the numerical simulation results with the self-similar solution, 3D DNS results and known experimental data has been achieved. This allows stating that the k-ε model constants chosen by the authors are acceptable for the considered flow.
基金funded by the Research Council of Norway, through NORKLIMA Young Investigator grant
文摘In spring preceding the record minimum summer ice cover detailed microstructure measurements were made from drifting pack ice in the Arctic Ocean, 110 km from the North Pole. Profiles of hydrography, shear, and temperature microstructure collected in the upper water column covering the core of the Atlantic Water are analyzed to determine the diapycnal eddy diffusivity, the eddy diffusivity for heat, and the turbulent flux of heat. Turbulence in the bulk of the cold halocline layer was not strong enough to generate significant buoyancy flux and mixing. Resulting turbulent heat flux across the upper cold halocline was not significantly different than zero. The results show that the low levels of eddy diffusivity in the upper cold halocline lead to small vertical turbulent transport of heat, thereby allowing the maintenance of the cold halocline in the central Arctic.