Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of...Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energybased criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature.展开更多
The genearlized planar fault energies of Al and Al-RE (RE = Sc, Y, Dy, Tb, Nd) alloys have been investigated using first-principles methods combined with a quasiharmonic approach. The stacking fault energies, unstab...The genearlized planar fault energies of Al and Al-RE (RE = Sc, Y, Dy, Tb, Nd) alloys have been investigated using first-principles methods combined with a quasiharmonic approach. The stacking fault energies, unstable stacking fault energies, and unstable twinning energies decrease slightly with increasing temperature. The ductility parameter D, the relative barrier difference Sut, and the twinnability τa of Al and Al-RE alloys at different temperatures have been determined. It is found that the ductilities of Al and Al alloys are nearly the same and the ductilities increase slightly with increasing temperature. The RE alloying elements make twinning more likely and the twinnabilities of Al and Al alloys decrease with increasing temperature.展开更多
Inherent twinnability of face-centered-cubic(fcc) metals was analyzed based on the direct competition between twinning partial dislocation nucleation and trailing partial dislocation nucleation,with which the twinna...Inherent twinnability of face-centered-cubic(fcc) metals was analyzed based on the direct competition between twinning partial dislocation nucleation and trailing partial dislocation nucleation,with which the twinnability of fcc metals can be simply expressed as function of the stacking-fault energy,the unstable stacking-fault energy,and the unstable twinningfault energy of fcc metals.The predicted twinnability ranking matched well with former experimental results and provided a physical insight to understand twinnability from crystallographic orientation and fault energy parameters.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104361 and 11304403)the Fundamental Research Funds for the Central Universities,China(Grant Nos.CQDXWL2014003 and CDJZR14328801)
文摘Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energybased criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.11104361 and 11304403)the Fundamental Research Funds for the Central Universities,China(Grant No.CQDXWL2012015)
文摘The genearlized planar fault energies of Al and Al-RE (RE = Sc, Y, Dy, Tb, Nd) alloys have been investigated using first-principles methods combined with a quasiharmonic approach. The stacking fault energies, unstable stacking fault energies, and unstable twinning energies decrease slightly with increasing temperature. The ductility parameter D, the relative barrier difference Sut, and the twinnability τa of Al and Al-RE alloys at different temperatures have been determined. It is found that the ductilities of Al and Al alloys are nearly the same and the ductilities increase slightly with increasing temperature. The RE alloying elements make twinning more likely and the twinnabilities of Al and Al alloys decrease with increasing temperature.
基金support from the "Hundred Talents Project" of CAS,the Cheung Kong Scholars Programthe National Natural Science Foundation of China (NSFC Grant No.10776032)+1 种基金Chinese MOST (Grant No. 2009CB623702)NSF (CMMI 0928517) through University of Pittsburgh
文摘Inherent twinnability of face-centered-cubic(fcc) metals was analyzed based on the direct competition between twinning partial dislocation nucleation and trailing partial dislocation nucleation,with which the twinnability of fcc metals can be simply expressed as function of the stacking-fault energy,the unstable stacking-fault energy,and the unstable twinningfault energy of fcc metals.The predicted twinnability ranking matched well with former experimental results and provided a physical insight to understand twinnability from crystallographic orientation and fault energy parameters.