期刊文献+
共找到331篇文章
< 1 2 17 >
每页显示 20 50 100
Magnetic and electronic properties of bulk and two-dimensional FeBi_(2)Te_(4):A first-principles study
1
作者 王倩倩 赵建洲 +4 位作者 吴维康 周胤宁 Qile Li Mark T.Edmonds 杨声远 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期450-456,共7页
Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostruct... Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostructural to MnBi_(2)Te_(4),has been synthesized in experiments,but its detailed magnetic ordering and band topology have not been clearly understood yet.Here,based on first-principles calculations,we investigate the magnetic and electronic properties of FeBi_(2)Te_(4)in bulk and 2D forms.We show that different from MnBi_(2)Te_(4),the magnetic ground states of bulk,single-layer,and bilayer FeBi_(2)Te_(4)all favor a 120°noncollinear antiferromagnetic ordering,and they are topologically trivial narrow-gap semiconductors.For the bilayer case,we find that a quantum anomalous Hall effect with a unit Chern number is realized in the ferromagnetic state,which may be achieved in experiment by an external magnetic field or by magnetic proximity coupling.Our work clarifies the physical properties of the new material system of FeBi_(2)Te_(4)and reveals it as a potential platform for studying magnetic frustration down to 2D limit as well as quantum anomalous Hall effect. 展开更多
关键词 FeBi_(2)Te_(4) two-dimensional(2d)magnetism noncollinear antiferromagnet quantum anomalous Hall effect first-principles calculation
原文传递
男性2型糖尿病患者目标范围内时间与25羟基维生素D、骨密度的相关性研究
2
作者 杜婧 陶亚梅 +2 位作者 边古玥 王颖 虎静 《宁夏医学杂志》 CAS 2024年第10期859-862,共4页
目的探讨2型糖尿病(T2DM)葡萄糖在目标范围内时间(TIR)与25羟基维生素D、骨密度的相关性,进而评价TIR对于2型糖尿病患者防治骨质疏松的重要意义。方法选取194例男性T2DM患者,其糖化血红蛋白水平在7%~8%,同时给予二甲双胍0.5 g,2次/d,每... 目的探讨2型糖尿病(T2DM)葡萄糖在目标范围内时间(TIR)与25羟基维生素D、骨密度的相关性,进而评价TIR对于2型糖尿病患者防治骨质疏松的重要意义。方法选取194例男性T2DM患者,其糖化血红蛋白水平在7%~8%,同时给予二甲双胍0.5 g,2次/d,每次1粒口服,通过监测2日7段指尖血糖,进而计算TIR,以TIR值分组为高TIR组及低TIR组,分别比较两组的血糖波动指标、25羟基维生素D[25-(OH)D]、骨密度(BMD)的差异,并将TIR与其他数据做相关性分析及多元线性回归分析。结果2组间年龄、FPG、PPG、BMI、年龄、血脂均未见明显差异,血糖波动指标中SDBG及MDBG在2组中有统计学意义,高TIR组的25-(OH)D、BMD明显高于低TIR组。使用Pearson相关性研究方法证实,TIR与HbA1c、SDBG、MDBG、TG成负相关性,与25-(OH)D、BMD、HDL之间呈现正相关性,与其他指标无相关性。以TIR为因变量,以上述有相关性的数据为自变量,计算多元线性回归方程TIR=3.17-0.28×SDBG+0.53×25-(OH)D+0.69×BMD,证实SDBG、25-(OH)D、BMD与TIR有线性回归关系。结论SDBG上升使TIR下降,25-(OH)D、BMD上升使TIR升高,其中BMD对TIR的影响最大。目标范围内时间越高,患者的25-(OH)D、BMD则越高,临床可推广应用TIR作为糖尿病患者防治骨质疏松的一个重要指标。 展开更多
关键词 2型糖尿病 血糖波动 骨密度 25羟基维生素d 目标范围内时间
下载PDF
维生素D、甘油三酯/高密度脂蛋白胆固醇交互影响住院2型糖尿病血糖达标的作用
3
作者 杨清敏 丁红霞 叶晓晓 《实用医学杂志》 CAS 北大核心 2024年第21期3054-3060,共7页
目的探讨维生素D、甘油三酯(TG)/高密度脂蛋白胆固醇(HDL-C)交互影响住院2型糖尿病(T2DM)患者血糖达标时间的作用。方法选取2021年3月至2023年12月在河南宏力医院住院的82例T2DM患者进行回顾性队列研究,根据住院期间患者血糖达标时间分... 目的探讨维生素D、甘油三酯(TG)/高密度脂蛋白胆固醇(HDL-C)交互影响住院2型糖尿病(T2DM)患者血糖达标时间的作用。方法选取2021年3月至2023年12月在河南宏力医院住院的82例T2DM患者进行回顾性队列研究,根据住院期间患者血糖达标时间分为≤7 d组、>7 d组。比较两组基线资料、维生素D、TG/HDL-C水平,分析维生素D、TG/HDL-C水平与血糖达标时间的关系,比较不同维生素D水平患者TG/HDL-C水平,相对危险度(RR)及受试者工作特征(ROC)曲线分析维生素D、TG/HDL-c联合对住院T2DM患者血糖达标时间的交互作用及预测价值。结果>7 d组住院时间长于≤7 d组,空腹血糖、糖化血红蛋白、TG/HDL-C高于≤7 d组,维生素D水平低于≤7 d组,维生素D缺乏和严重缺乏患者占比高于≤7 d组(P<0.05);Pearson相关性分析,维生素D水平与血糖达标时间呈负相关(r=-0.733,P<0.001),TG/HDL-C水平与血糖达标时间呈正相关(r=0.830,P<0.001);校正后logistic回归显示,维生素D(95%CI:0.482~0.694)、TG/HDL-C水平(95%CI:1.053~1.392)仍是住院T2DM患者血糖达标时间的独立相关影响因素(P<0.05);维生素D不足、缺乏、严重缺乏患者TG/HDL-c水平高于充足患者(P<0.05);维生素D缺乏与TG/HDL-C升高共存所致住院T2DM患者血糖达标时间>7 d的RR为15.867,为次相乘模型;维生素D、TG/HDL-C联合预测住院T2DM血糖达标时间的AUC为0.929,大于维生素D、TG/HDL-c(Z=3.849、3.526,P<0.05)。结论住院T2DM患者维生素D、TG/HDL-C与血糖达标时间密切相关,二者同时暴露可影响患者血糖达标时间,且维生素D、TG/HDL-c联合预测住院T2DM血糖达标时间具有良好的参考价值。 展开更多
关键词 维生素d 甘油三酯 高密度脂蛋白胆固醇 交互作用 2型糖尿病 血糖达标时间
下载PDF
Numerical modeling of blast-induced rock fragmentation in deep mining with 3D and 2D FEM method approaches
4
作者 MichałKucewicz MazurkiewiczŁukasz +4 位作者 PawełBaranowski Jerzy Małachowski Krzysztof Fuławka Piotr Mertuszka Marcin Szumny 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4532-4553,共22页
To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology ... To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face. 展开更多
关键词 dolomite rock two-dimensional(2d)rock modeling Rock fragmentation Cut-hole blasting
下载PDF
Progress on mechanical and tribological characterization of 2D materials by AFM force spectroscopy
5
作者 Shuai WU Jie GU +6 位作者 Ruiteng LI Yuening TANG Lingxiao GAO Cuihua AN Qibo DENG Libin ZHAO Ning HU 《Friction》 SCIE EI CAS CSCD 2024年第12期2627-2656,共30页
Two-dimensional(2D)materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties,making them a focal point in nanotechnology research.Accurate assessment ... Two-dimensional(2D)materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties,making them a focal point in nanotechnology research.Accurate assessment of the mechanical and tribological properties of 2D materials is imperative to fully exploit their potential across diverse applications.However,their nanoscale thickness and planar nature pose significant challenges in testing and characterizing their mechanical properties.Among the in situ characterization techniques,atomic force microscopy(AFM)has gained widespread applications in exploring the mechanical behaviour of nanomaterials,because of the easy measurement capability of nano force and displacement from the AFM tips.Specifically,AFM-based force spectroscopy is a common approach for studying the mechanical and tribological properties of 2D materials.This review comprehensively details the methods based on normal force spectroscopy,which are utilized to test and characterize the elastic and fracture properties,adhesion,and fatigue of 2D materials.Additionally,the methods using lateral force spectroscopy can characterize the interfacial properties of 2D materials,including surface friction of 2D materials,shear behaviour of interlayers as well as nanoflake-substrate interfaces.The influence of various factors,such as testing methods,external environments,and the properties of test samples,on the measured mechanical properties is also addressed.In the end,the current challenges and issues in AFM-based measurements of mechanical and tribological properties of 2D materials are discussed,which identifies the trend in the combination of multiple methods concerning the future development of the in situ testing techniques. 展开更多
关键词 two-dimensional(2d)materials atomic force microscopy(AFM) mechanical properties nanomechanical testing NANOTRIBOLOGY
原文传递
A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
6
作者 苏静明 方士辉 +1 位作者 洪炎 温言 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期233-243,共11页
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con... A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc. 展开更多
关键词 color image encryption discrete cosine transform two-dimensional(2d)coupled chaotic system diagonal scrambling
原文传递
Two-dimensional plane strain consolidation of unsaturated soils considering the depth-dependent stress 被引量:1
7
作者 Lei Wang Sidong Shen +2 位作者 Tianyi Li Minjie Wen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1603-1614,共12页
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di... In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress. 展开更多
关键词 Semi-analytical solutions two-dimensional(2d)plane strain CONSOLIdATION Unsaturated soils depth-dependent stress Laplace transform
下载PDF
Green's functions of two-dimensional piezoelectric quasicrystal in half-space and bimaterials 被引量:1
8
作者 Xiaoyu FU Xiang MU +2 位作者 Jinming ZHANG Liangliang ZHANG Yang GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期237-254,共18页
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti... In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree. 展开更多
关键词 Green’s function two-dimensional(2d)piezoelectric quasicrystal(PQC) Stroh formalism HALF-SPACE BIMATERIAL
下载PDF
Waveguide-integrated optical modulators with two-dimensional materials
9
作者 Haitao Chen Hongyuan Cao +2 位作者 Zejie Yu Weike Zhao Daoxin Dai 《Journal of Semiconductors》 EI CAS CSCD 2023年第11期8-25,共18页
Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integr... Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed. 展开更多
关键词 optical modulation two-dimensional(2d)materials ON-CHIP WAVEGUIdE
下载PDF
Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
10
作者 郭宏阳 张平 +2 位作者 杨生鹏 王少萌 宫玉彬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期268-276,共9页
The Ga N high electron mobility transistor(HEMT)has been considered as a potential terahertz(THz)radiation source,yet the low radiation power level restricts their applications.The HEMT array is thought to improve the... The Ga N high electron mobility transistor(HEMT)has been considered as a potential terahertz(THz)radiation source,yet the low radiation power level restricts their applications.The HEMT array is thought to improve the coupling efficiency between two-dimensional(2D)plasmons and THz radiation.In this work,we investigate the plasma oscillation,electromagnetic radiation,and the integration characteristics of Ga N HEMT targeting at a high THz radiation power source.The quantitative radiation power and directivity are obtained for integrated Ga N HEMT array with different array periods and element numbers.With the same initial plasma oscillation phase among the HEMT units,the radiation power of the two-element HEMT array can achieve 4 times as the single HEMT radiation power when the array period is shorter than 1/8electromagnetic wavelength.In addition,the radiation power of the HEMT array varies almost linearly with the element number,the smaller array period can lead to the greater radiation power.It shows that increasing the array period could narrow the main radiated lobe width while weaken the radiation power.Increasing the element number can improve both the radiation directivity and power.We also synchronize the plasma wave phases in the HEMT array by adopting an external Gaussian plane wave with central frequency the same as the plasmon resonant frequency,which solves the problem of the radiation power reduction caused by the asynchronous plasma oscillation phases among the elements.The study of the radiation power amplification of the one-dimensional(1D)Ga N HEMT array provides useful guidance for the research of compact high-power solid-state terahertz sources. 展开更多
关键词 GaN HEMT array two-dimensional(2d)plasmons THz emission
原文传递
A Numerical Algorithm Based on Quadratic Finite Element for Two-Dimensional Nonlinear Time Fractional Thermal Diffusion Model 被引量:3
11
作者 Yanlong Zhang Baoli Yin +2 位作者 Yue Cao Yang Liu Hong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1081-1098,共18页
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d... In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results. 展开更多
关键词 Quadratic finite element two-dimensional nonlinear time fractional thermal diffusion model L2-1formula.
下载PDF
USING TWO-DIMENSIONAL TIME RESOLVED LIGHT SCATTERING TO STUDY THE CURE REACTION INDUCED PHASE SEPARATION PROCESS OF EPOXY-AMINE-POLYETHERSULFONE BLEND WITH SECONDARY PHASE SEPARATION 被引量:1
12
作者 唐晓林 张红东 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第1期63-68,共6页
The generalized two-dimensional correlation analysis based on time-resolved light scattering patterns (2D TRLS) has been employed to study the phase separation process of an epoxy-amine-polyethersulfone blend in whi... The generalized two-dimensional correlation analysis based on time-resolved light scattering patterns (2D TRLS) has been employed to study the phase separation process of an epoxy-amine-polyethersulfone blend in which the secondary phase separation takes place. The results of the 2D TRLS provided more detailed information that was not readily observed in the 1D TRLS patterns. (i) During the first process of phase separation, the sequential order of coarsening in size of the domains among the larger and smaller ones has been reversed between the diffusion regime and the hydrodynamic regime. (ii) The change of the larger domains in size, due to the hydrodynamic flow in the late stage of the first phase separation process, keeps on taking place earlier than that of the new domains appeared in the secondary phase separation process. (iii) During the secondary phase separation process the size growth of the smaller domains takes place earlier than that of the larger ones, probably due to the assumption that the coarsening mode could decrease the interface tension more quickly. 展开更多
关键词 two-dimensional 2d correlation analysis time-resolved light scattering (TRLS) Phase separation BLENd
下载PDF
Design of Discrete-time Repetitive Control System Based on Two-dimensional Model 被引量:1
13
作者 Song-Gui Yuan Min Wu +1 位作者 Bao-Gang Xu Rui-Juan Liu 《International Journal of Automation and computing》 EI 2012年第2期165-170,共6页
This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both th... This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both the control action and the learning action in RCS. Then, through constructing a 2D state feedback controller, the design problem of the RCS is converted to the design problem of a 2D system. Then, using 2D system theory and linear matrix inequality (LMI) method, stability criterion is derived for the system without and with uncertainties, respectively. Parameters of the system can be determined by solving the LMI of the stability criterion. Finally, numerical simulations validate the effectiveness of the proposed method. 展开更多
关键词 Linear systems learning control discrete-time repetitive control two-dimensional 2d systems linear matrix inequality.
下载PDF
A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
14
作者 Somayeh Yeganeh Reza Mokhtari Jan SHesthaven 《Communications on Applied Mathematics and Computation》 2020年第4期689-709,共21页
For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numeric... For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable.Numerical results indicate the effectiveness and accuracy of the method and con-firm the analysis. 展开更多
关键词 two-dimensional(2d)time fractional difusion equation Local discontinuous Galerkin method(LdG) Numerical stability Convergence analysis
下载PDF
Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg–de Vries equation
15
作者 Yulei Cao Peng-Yan Hu +1 位作者 Yi Cheng Jingsong He 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期205-214,共10页
Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an a... Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems. 展开更多
关键词 two-dimensional(2d)Korteweg-de Vries(KdV)equation Bilinear method Backlund transformation Lax pair deformed 2d rogue wave
原文传递
Origin of itinerant ferromagnetism in two-dimensional Fe_(3)GeTe_(2)
16
作者 Xi Chen Zheng-Zhe Lin Li-Rong Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期119-124,共6页
Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and ... Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and Fe_(3)GeTe_(2) opens up a new chapter in the remarkable field of two-dimensional materials.Here,we report on a theoretical analysis of the stability of ferromagnetism in Fe_(3)GeTe_(2).We uncover the mechanism of holding long-range magnetic order and propose a model to estimate the Curie temperature of Fe_(3)GeTe_(2).Our results reveal the essential role of magnetic anisotropy in maintaining the magnetic order of two-dimensional systems.The theoretical method used here can be generalized to future research of other magnetic two-dimensional systems. 展开更多
关键词 two-dimensional(2d)ferromagnetism spin wave magnetic anisotropy
原文传递
Two-dimensional hexagonal Zn3Si2 monolayer:Dirac cone material and Dirac half-metallic manipulation
17
作者 Yurou Guan Lingling Song +4 位作者 Hui Zhao Renjun Du Liming Liu Cuixia Yan Jinming Cai 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期418-423,共6页
The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional the... The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional theory method,a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted.The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions.Importantly,the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV,which has an intrinsic Dirac cone arising from the special hexagonal lattice structure.Hole doping leads to the spin polarization of the electron,which results in a Dirac half-metal feature with single-spin Dirac fermion.This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics. 展开更多
关键词 two-dimensional(2d)dirac cone material dirac half-metal first-principles calculation spin-orbit coupling
原文传递
Field-effect transistors based on two-dimensional materials for logic applications 被引量:3
18
作者 王欣然 施毅 张荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期147-161,共15页
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi... Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors. 展开更多
关键词 graphene MOS2 two-dimensional 2d materials field-effect transistors
原文传递
Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium 被引量:4
19
作者 Tuoya SUN Junhong GUO E.PAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第8期1077-1094,共18页
A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction be... A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2 D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional(3 D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories.Numerical examples are provided to display the effects of the quasiperiodic direction,length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence,and medium elasticity on the vibration frequency and critical buckling load of the 2 D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate.This feature is useful since the frequency and critical buckling load of the 2 D decagonal QCs as coating materials of plate structures can now be tuned as one desire. 展开更多
关键词 two-dimensional(2d)quasicrystal(QC) NANOPLATE VIBRATION BUCKLING elastic medium exact solution
下载PDF
Thermal transport in semiconductor nanostructures, graphene,and related two-dimensional materials 被引量:2
20
作者 Alexandr I.Cocemasov Calina I.Isacova Denis L.Nika 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期74-82,共9页
We review experimental and theoretical results on thermal transport in semiconductor nanostructures(multilayer thin films, core/shell and segmented nanowires), single-and few-layer graphene, hexagonal boron nitride,... We review experimental and theoretical results on thermal transport in semiconductor nanostructures(multilayer thin films, core/shell and segmented nanowires), single-and few-layer graphene, hexagonal boron nitride, molybdenum disulfide, and black phosphorus. Different possibilities of phonon engineering for optimization of electrical and heat conductions are discussed. The role of the phonon energy spectra modification on the thermal conductivity in semiconductor nanostructures is revealed. The dependence of thermal conductivity in graphene and related two-dimensional(2 D) materials on temperature, flake size, defect concentration, edge roughness, and strain is analyzed. 展开更多
关键词 PHONONS thermal conductivity NANOWIRE GRAPHENE two-dimensional 2d materials
原文传递
上一页 1 2 17 下一页 到第
使用帮助 返回顶部