To further reveal the failure mechanisms of thick ultra-high molecular weight polyethylene(UHMWPE)laminates,field firing tests were conducted for 10-,20-,and 30-mm thick laminates against 12.7-mm calibre wedge-shaped ...To further reveal the failure mechanisms of thick ultra-high molecular weight polyethylene(UHMWPE)laminates,field firing tests were conducted for 10-,20-,and 30-mm thick laminates against 12.7-mm calibre wedge-shaped fragment simulated projectiles at high velocities between 450 and 1200 m/s.The ballistic performance,deformation process,and staged failure characteristics of the laminates with different thicknesses were compared and analysed.The results demonstrate that the ballistic limits of the UHMWPE laminates increase almost linearly with laminate thickness.The 10-mm thick laminate generally experiences two-stage failure characteristics,whereas three-staged failure occurs in the 20-and 30-mm thick laminates and the progressive delamination is evident.The energy limit concept representing the maximum energy absorption efficiency and the idea of reuse of the thick UHMWPE laminates are proposed in this study.The findings of this research will be useful in the design of flexible and effective UHMWPE-based protective equipment.展开更多
The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic ...The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic high velocity fragments were studied. According to the ballistic experimental results and theoretical analysis, the linear relation between ballistic limit vBL and area density AD was confirmed. The relative parameters of showing experientially residual velocity vr were expressed by the function of AD. In the end, versatile experiential expression between vr and AD was found. Prediction of vr and vBL using obtained expressions under the above stated condition of impacting URP was consistent with the experimentaled results. Consequently, the two experiential relations can be used to predict the residual velocity and ballistic limit of cubic high velocity fragments impacting URP. The residual characteristic of high-velocity steel fragments penetrating UHMWPE FRP laminates can be more exactly forecasted by the two derived experiential formulas.展开更多
To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different t...To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.展开更多
基金the financial support from National Natural Science Foundation of China(Grant No.51978166)National Key Research and Development Program of China(Grant No.2019YFC0706105,2021YFC3100703)the Fundamental Research Funds for the Central Universities(Grant No.2242022R10124s)。
文摘To further reveal the failure mechanisms of thick ultra-high molecular weight polyethylene(UHMWPE)laminates,field firing tests were conducted for 10-,20-,and 30-mm thick laminates against 12.7-mm calibre wedge-shaped fragment simulated projectiles at high velocities between 450 and 1200 m/s.The ballistic performance,deformation process,and staged failure characteristics of the laminates with different thicknesses were compared and analysed.The results demonstrate that the ballistic limits of the UHMWPE laminates increase almost linearly with laminate thickness.The 10-mm thick laminate generally experiences two-stage failure characteristics,whereas three-staged failure occurs in the 20-and 30-mm thick laminates and the progressive delamination is evident.The energy limit concept representing the maximum energy absorption efficiency and the idea of reuse of the thick UHMWPE laminates are proposed in this study.The findings of this research will be useful in the design of flexible and effective UHMWPE-based protective equipment.
基金Sponsored by the 11th Five Years Foundation for Military Advance Research (40103050103)
文摘The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic high velocity fragments were studied. According to the ballistic experimental results and theoretical analysis, the linear relation between ballistic limit vBL and area density AD was confirmed. The relative parameters of showing experientially residual velocity vr were expressed by the function of AD. In the end, versatile experiential expression between vr and AD was found. Prediction of vr and vBL using obtained expressions under the above stated condition of impacting URP was consistent with the experimentaled results. Consequently, the two experiential relations can be used to predict the residual velocity and ballistic limit of cubic high velocity fragments impacting URP. The residual characteristic of high-velocity steel fragments penetrating UHMWPE FRP laminates can be more exactly forecasted by the two derived experiential formulas.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172179,U2341244,and 11772160)。
文摘To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.