Magnetic survey is one of the most successful techniques for locating buried unexploded ordnances( UXO). For the location and identification of buried UXO in Jinshan area,a total-field magnetic survey is applied. The ...Magnetic survey is one of the most successful techniques for locating buried unexploded ordnances( UXO). For the location and identification of buried UXO in Jinshan area,a total-field magnetic survey is applied. The analytic signal of magnetic field is widely used to outline the boundaries of geology bodies,slightly dependent on the magnetization direction. In order to locate the UXO position,the analytic signal is applied to process the magnetic UXO data,which performs better than the conventional magnetic data. Then a typical UXO anomaly is extracted from the original data to invert for its depth by an improved Euler method proposed.The calculated depth is close to the real buried depth.展开更多
This paper aims to provide the reader with the results of the Unexploded Ordnance(UXO)survey of the defensive historical naval minefields launched by the Romanian and German Navies on the Romanian Black Sea coast,duri...This paper aims to provide the reader with the results of the Unexploded Ordnance(UXO)survey of the defensive historical naval minefields launched by the Romanian and German Navies on the Romanian Black Sea coast,during the Second World War.This UXO survey was carried out between 2015-2018 by the Romanian Navy’s hydrographic ship“Commander Alexandru Cătuneanu”and Romanian Mine Warfare Data Center,using towed side-scan sonar technology and oceanographic observations.After explaining the materials and methodology,the results are presented and discussed:mosaics of the minefields,side-scan images of UXO contacts,side-scan images of the wrecks that were sunk in the minefields and some visible natural geological features of the seafloor.It was concluded that most of the objects discovered are sinkers,wreck debris or parts of chains,which does not represent a danger to navigation.展开更多
Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent...Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.展开更多
采用溶胶-凝胶法制备Cu x Zn1-x O薄膜,用X射线衍射仪、原子力显微镜、紫外-可见分光光度计和荧光光谱仪研究薄膜的微结构、表面形貌、透射谱和光致发光谱,结果表明:薄膜均呈六角纤锌矿结构,随着Cu含量增加,薄膜平均晶粒尺寸先增大后减...采用溶胶-凝胶法制备Cu x Zn1-x O薄膜,用X射线衍射仪、原子力显微镜、紫外-可见分光光度计和荧光光谱仪研究薄膜的微结构、表面形貌、透射谱和光致发光谱,结果表明:薄膜均呈六角纤锌矿结构,随着Cu含量增加,薄膜平均晶粒尺寸先增大后减小,表面RMS粗糙度先减小后增大,紫外吸收边发生蓝移,薄膜在可见光波段范围内的平均透过率在80%左右。未掺杂ZnO薄膜中出现一个相对较弱紫光发射带和一个很强的绿光发射带,其它薄膜中出现一个紫光发射和一个蓝光发射带;紫光发射归因于导带以下的局域能级与价带之间的电子跃迁,绿光发射来自于氧空位缺陷能级与价带之间的电子跃迁。展开更多
基于多台海洋磁力仪、测深仪和GPS,研制了数据合成器、水下拖体、电源适配器、数据收录兼导航软件,最终构建了一种阵列式海洋磁力测量系统。该阵列式海洋磁力测量系统具备3个磁力仪通道,动态噪声≤0.3n T p-p,采样率为10Hz,水下部分总...基于多台海洋磁力仪、测深仪和GPS,研制了数据合成器、水下拖体、电源适配器、数据收录兼导航软件,最终构建了一种阵列式海洋磁力测量系统。该阵列式海洋磁力测量系统具备3个磁力仪通道,动态噪声≤0.3n T p-p,采样率为10Hz,水下部分总重量≤95kg,配迫降翼后入水深度可达22m。该阵列式磁力测量系统曾被应用于董家口港区某锚地的未爆炸物探测,最终确定了多个疑似物位置。展开更多
On October 13,2020,on the fairway connecting the Polish Baltic ports ofSwinoujscie and Szczecin,an underwater hazardous object of historical origin in the form of the British deep penetration bomb Tallboy dropped duri...On October 13,2020,on the fairway connecting the Polish Baltic ports ofSwinoujscie and Szczecin,an underwater hazardous object of historical origin in the form of the British deep penetration bomb Tallboy dropped during the bombing of the German cruiser"Lützow"in April 1945 was neutralized successfully.It is believed to be the first underwater action concerning this type of bomb,which has previously been neutralized on land in Europe(Germany,one confirmed case).The preparation of the operation,on an unprecedented scale at national,European and global level,took one year and included a series of projects related to clearing the space around the bomb from other identified UXO objects,international consultations,historical analyses,determination of the risk to residents and critical infrastructure in the event of an explosion of the bomb containing approximately 2400 kg of the TORPEX explosive(with an increased force equivalent to almost 3600 kg of TNT).The object was neutralized on spot at the depth of 12 m,near a ferry crossing,by specialists from the 41st Navy EOD Team from the 12th MCM Squadron(8th Coastal Defence Flotilla),using the Low Order Deflagration technique(underwater deflagration method).In the case discussed,there was an accumulation of unfavourable conditions which practically excluded the use of blow-in-situ explosive methods(BIP),as well as the extraction of the object and its transport to a military ground.After a partial deflagration of the explosive,the explosive was detonated(DDT).Estimates indicate that the deflagration level reached between 55 and 60%,which significantly reduced the strength and effects of the underwater explosion.展开更多
文摘Magnetic survey is one of the most successful techniques for locating buried unexploded ordnances( UXO). For the location and identification of buried UXO in Jinshan area,a total-field magnetic survey is applied. The analytic signal of magnetic field is widely used to outline the boundaries of geology bodies,slightly dependent on the magnetization direction. In order to locate the UXO position,the analytic signal is applied to process the magnetic UXO data,which performs better than the conventional magnetic data. Then a typical UXO anomaly is extracted from the original data to invert for its depth by an improved Euler method proposed.The calculated depth is close to the real buried depth.
文摘This paper aims to provide the reader with the results of the Unexploded Ordnance(UXO)survey of the defensive historical naval minefields launched by the Romanian and German Navies on the Romanian Black Sea coast,during the Second World War.This UXO survey was carried out between 2015-2018 by the Romanian Navy’s hydrographic ship“Commander Alexandru Cătuneanu”and Romanian Mine Warfare Data Center,using towed side-scan sonar technology and oceanographic observations.After explaining the materials and methodology,the results are presented and discussed:mosaics of the minefields,side-scan images of UXO contacts,side-scan images of the wrecks that were sunk in the minefields and some visible natural geological features of the seafloor.It was concluded that most of the objects discovered are sinkers,wreck debris or parts of chains,which does not represent a danger to navigation.
基金the Office of Naval Research for supporting this effort through the Consortium for Robotics and Unmanned Systems Education and Research。
文摘Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.
文摘采用溶胶-凝胶法制备Cu x Zn1-x O薄膜,用X射线衍射仪、原子力显微镜、紫外-可见分光光度计和荧光光谱仪研究薄膜的微结构、表面形貌、透射谱和光致发光谱,结果表明:薄膜均呈六角纤锌矿结构,随着Cu含量增加,薄膜平均晶粒尺寸先增大后减小,表面RMS粗糙度先减小后增大,紫外吸收边发生蓝移,薄膜在可见光波段范围内的平均透过率在80%左右。未掺杂ZnO薄膜中出现一个相对较弱紫光发射带和一个很强的绿光发射带,其它薄膜中出现一个紫光发射和一个蓝光发射带;紫光发射归因于导带以下的局域能级与价带之间的电子跃迁,绿光发射来自于氧空位缺陷能级与价带之间的电子跃迁。
文摘基于多台海洋磁力仪、测深仪和GPS,研制了数据合成器、水下拖体、电源适配器、数据收录兼导航软件,最终构建了一种阵列式海洋磁力测量系统。该阵列式海洋磁力测量系统具备3个磁力仪通道,动态噪声≤0.3n T p-p,采样率为10Hz,水下部分总重量≤95kg,配迫降翼后入水深度可达22m。该阵列式磁力测量系统曾被应用于董家口港区某锚地的未爆炸物探测,最终确定了多个疑似物位置。
文摘On October 13,2020,on the fairway connecting the Polish Baltic ports ofSwinoujscie and Szczecin,an underwater hazardous object of historical origin in the form of the British deep penetration bomb Tallboy dropped during the bombing of the German cruiser"Lützow"in April 1945 was neutralized successfully.It is believed to be the first underwater action concerning this type of bomb,which has previously been neutralized on land in Europe(Germany,one confirmed case).The preparation of the operation,on an unprecedented scale at national,European and global level,took one year and included a series of projects related to clearing the space around the bomb from other identified UXO objects,international consultations,historical analyses,determination of the risk to residents and critical infrastructure in the event of an explosion of the bomb containing approximately 2400 kg of the TORPEX explosive(with an increased force equivalent to almost 3600 kg of TNT).The object was neutralized on spot at the depth of 12 m,near a ferry crossing,by specialists from the 41st Navy EOD Team from the 12th MCM Squadron(8th Coastal Defence Flotilla),using the Low Order Deflagration technique(underwater deflagration method).In the case discussed,there was an accumulation of unfavourable conditions which practically excluded the use of blow-in-situ explosive methods(BIP),as well as the extraction of the object and its transport to a military ground.After a partial deflagration of the explosive,the explosive was detonated(DDT).Estimates indicate that the deflagration level reached between 55 and 60%,which significantly reduced the strength and effects of the underwater explosion.