Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te...Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.展开更多
Currently,industrial robots are considered as an alternative towards traditional machine tools.Especially for the large-scale parts milling,robotic flexibility and low cost make it possess the irreplaceability.However...Currently,industrial robots are considered as an alternative towards traditional machine tools.Especially for the large-scale parts milling,robotic flexibility and low cost make it possess the irreplaceability.However,the milling chatter caused by its weak rigidity hampers robotic application and promotion severely in aviation industry.Rotary ultrasonic milling(RUM)technology with one-dimensional axial vibration has been proven and approved on avoiding robotic chatter.Based on this,the research of project team demonstrates that longitudinal-torsional composite ultrasonic milling(CUM-LT)involving separation characteristic has a greater advantage than RUM in terms of chatter suppression.Thereby,the CUM-LT as a new means is applied to avoid processing vibration of robotic milling system.And its influence mechanism on stability improvement of weak stiffness processing system is clarified.Meanwhile,the approaches to strengthen separation effect are provided innovatively.Moreover,a new analysis method of robotic CUM-LT(RCUM-LT)stability is proposed on the basis of ultrasonic function angles.The simulation and experimental results indicate that compared with robotic RUM(RRUM),stability regions of separated RCUM-LT(SRCUM-LT)and unseparated RCUM-LT(URCUM-LT)are improved by 124.42%and39.20%,respectively.The addition of torsional ultrasonic energy has a wonderful effect on the milling chatter suppression of low stiffness robots.展开更多
The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite el...The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite element model of supersonic vibration milling in cutting stability domain.The surface roughness trial scheme is designed in the orthogonal test design method to analyze the surface roughness test result in the response surface methodology.The surface roughness prediction model is established and optimized.Finally,the surface roughness finite element simulation prediction model is verified by experiments.The research results show that,compared with the experiment results,the error range of the finite element simulation model is 27.5%–30.9%,and the error range of the empirical model obtained by the response surface method is between 4.4%and 12.3%.So,the model in this paper is accurate and will provide the theoretical basis for the optimization study of the auxiliary milling process of supersonic vibration.展开更多
Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption....Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future.展开更多
Dry milling followed by ultrasonic irradiation in the presence of small amounts of aqueous NaOH, was used to synthesise ZnAl-layered double hydroxide (LDH). The synthetic conditions were optimised and the Zn(OH)2,...Dry milling followed by ultrasonic irradiation in the presence of small amounts of aqueous NaOH, was used to synthesise ZnAl-layered double hydroxide (LDH). The synthetic conditions were optimised and the Zn(OH)2, ZnO, and AI(OH)3 contaminants were removed by rinsing with aqueous NH3 solution from the sample prepared in the optimum conditions. Thus, phase-pure ZnAl-layered double hydroxide was obtained with high crystallinity. All materials produced during the syntheses were characterised by X- ray diffractometry, and a rose-like morphology was observed by scanning electron microscopy in the phase-pure sample. By changing the initial Zn/Al ratio, it was revealed that an LDH with low zinc content was always formed, probably through substitution of some of the Zn2. ions by AI3. ions in the gibbsite lattice.展开更多
Ultrasonic attenuation spectroscopy (UAS) is an attractive process analytical technology (PAT) for on-line real-time characterisation of slurries for particle size distribution (PSD) estimation. It is however on...Ultrasonic attenuation spectroscopy (UAS) is an attractive process analytical technology (PAT) for on-line real-time characterisation of slurries for particle size distribution (PSD) estimation. It is however only applicable to relatively low solid concentrations since existing instrument process models still cannot fully take into account the phenomena of particle-particle interaction and multiple scattering, leading to errors in PSD estimation. This paper investigates an alternative use of the raw attenuation spectra for direct multivariate statistical process control (MSPC). The UAS raw spectra were processed using principal component analysis. The selected principal components were used to derive two MSPC statistics, the Hotelling's T2 and square prediction error (SPE). The method is illustrated and demonstrated by reference to a wet milling process for processinR nanoparticles.展开更多
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2023QE041)China Postdoctoral Science Foundation(Grant No.2023M731862)National Natural Science Foundation of China(Grant No.51975112).
文摘Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.
基金co-supported by the National Natural Science Foundation of China(Nos.91860132,51861145405,52075265)。
文摘Currently,industrial robots are considered as an alternative towards traditional machine tools.Especially for the large-scale parts milling,robotic flexibility and low cost make it possess the irreplaceability.However,the milling chatter caused by its weak rigidity hampers robotic application and promotion severely in aviation industry.Rotary ultrasonic milling(RUM)technology with one-dimensional axial vibration has been proven and approved on avoiding robotic chatter.Based on this,the research of project team demonstrates that longitudinal-torsional composite ultrasonic milling(CUM-LT)involving separation characteristic has a greater advantage than RUM in terms of chatter suppression.Thereby,the CUM-LT as a new means is applied to avoid processing vibration of robotic milling system.And its influence mechanism on stability improvement of weak stiffness processing system is clarified.Meanwhile,the approaches to strengthen separation effect are provided innovatively.Moreover,a new analysis method of robotic CUM-LT(RCUM-LT)stability is proposed on the basis of ultrasonic function angles.The simulation and experimental results indicate that compared with robotic RUM(RRUM),stability regions of separated RCUM-LT(SRCUM-LT)and unseparated RCUM-LT(URCUM-LT)are improved by 124.42%and39.20%,respectively.The addition of torsional ultrasonic energy has a wonderful effect on the milling chatter suppression of low stiffness robots.
基金National Natural Science Foundation of China(Grant No.52175393).
文摘The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite element model of supersonic vibration milling in cutting stability domain.The surface roughness trial scheme is designed in the orthogonal test design method to analyze the surface roughness test result in the response surface methodology.The surface roughness prediction model is established and optimized.Finally,the surface roughness finite element simulation prediction model is verified by experiments.The research results show that,compared with the experiment results,the error range of the finite element simulation model is 27.5%–30.9%,and the error range of the empirical model obtained by the response surface method is between 4.4%and 12.3%.So,the model in this paper is accurate and will provide the theoretical basis for the optimization study of the auxiliary milling process of supersonic vibration.
基金supported by the National Key R&D Program of China(Grant No.2020YFB2010500).
文摘Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future.
文摘Dry milling followed by ultrasonic irradiation in the presence of small amounts of aqueous NaOH, was used to synthesise ZnAl-layered double hydroxide (LDH). The synthetic conditions were optimised and the Zn(OH)2, ZnO, and AI(OH)3 contaminants were removed by rinsing with aqueous NH3 solution from the sample prepared in the optimum conditions. Thus, phase-pure ZnAl-layered double hydroxide was obtained with high crystallinity. All materials produced during the syntheses were characterised by X- ray diffractometry, and a rose-like morphology was observed by scanning electron microscopy in the phase-pure sample. By changing the initial Zn/Al ratio, it was revealed that an LDH with low zinc content was always formed, probably through substitution of some of the Zn2. ions by AI3. ions in the gibbsite lattice.
文摘Ultrasonic attenuation spectroscopy (UAS) is an attractive process analytical technology (PAT) for on-line real-time characterisation of slurries for particle size distribution (PSD) estimation. It is however only applicable to relatively low solid concentrations since existing instrument process models still cannot fully take into account the phenomena of particle-particle interaction and multiple scattering, leading to errors in PSD estimation. This paper investigates an alternative use of the raw attenuation spectra for direct multivariate statistical process control (MSPC). The UAS raw spectra were processed using principal component analysis. The selected principal components were used to derive two MSPC statistics, the Hotelling's T2 and square prediction error (SPE). The method is illustrated and demonstrated by reference to a wet milling process for processinR nanoparticles.