In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener fi...In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.展开更多
Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal samplin...Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal sampling rate and the quantity of sampling data.However,the pulse number of the signal must be known beforehand for the signal reconstruction procedure.The accuracy of this prior information directly affects the accuracy of the estimated parameters of the signal and influences the assessment of flaws,leading to a lower defect detection ratio.Although the pulse number can be pre-given by theoretical analysis,the process is still unable to assess actual complex random orientation defects.Therefore,this paper proposes a new method that uses singular value decomposition(SVD) for estimating the pulse number from sparse sampling data and avoids the shortcoming of providing the pulse number in advance for signal reconstruction.When the sparse sampling data have been acquired from the ultrasonic signal,these data are transformed to discrete Fourier coefficients.A Hankel matrix is then constructed from these coefficients,and SVD is performed on the matrix.The decomposition coefficients reserve the information of the pulse number.When the decomposition coefficients generated by noise according to noise level are removed,the number of the remaining decomposition coefficients is the signal pulse number.The feasibility of the proposed method was verified through simulation experiments.The applicability was tested in ultrasonic experiments by using sample flawed pipelines.Results from simulations and real experiments demonstrated the efficiency of this method.展开更多
To achieve sparse sampling on a coded ultrasonic signal,the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse samplin...To achieve sparse sampling on a coded ultrasonic signal,the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse sampling for an ultrasonic signal pulse is presented.Differences between the pulse and the coded ultrasonic signal are analyzed,and a response mathematical model of the coded ultrasonic signal is established.A time-domain transform algorithm,called the high-order moment method,is applied to obtain a pulse stream signal to assist BFC ultrasonic signal sparse sampling.A sampling of the output signal with a uniform interval is then performed after modulating the pulse stream signal by a sampling kernel.FRI-based sparse sampling is performed using a self-made circuit on an aluminum alloy sample.Experimental results show that the sampling rate reduces to 0.5 MHz,which is at least 12.8 MHz in the Nyquist sampling mode.The echo peak amplitude and the time of flight are estimated from the sparse sampling data with maximum errors of 9.324%and 0.031%,respectively.This research can provide a theoretical basis and practical application reference for reducing the sampling rate and data volume in coded ultrasonic testing.展开更多
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom...The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.展开更多
The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved v...The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved variational mode decomposition(VMD)for noise echo signals is proposed.The number of decomposition layers of the traditional VMD is hard to determine,therefore,the center frequency similarity factor is firstly constructed and used as the judgment criterion to select the number of VMD decomposition layers adaptively;Secondly,VMD algorithm is used to decompose the echo signal into several modal components with a single modal component,and the useful echo components are extracted based on the features of the ultrasonic emission signal;Finally,the liquid density is calculated by extracting the amplitude and time of the echo from the modal components.The simulation results show that using the improved VMD to decompose the echo signal not only can improve the signal-to-noise ratio of the echo signal to 20.64 dB,but also can accurately obtain the echo information such as time and amplitude.Compared with the ensemble empirical mode decomposition(EEMD),this method effectively suppresses the modal aliasing,keeps the details of the signal to the maximum extent while suppressing noise,and improves the accuracy of the liquid density measurement.The density measurement accuracy can reach 0.21%of full scale.展开更多
During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode ...During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode decomposition(IVMD)and autoregressive(AR)model was proposed,which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment.Firstly,the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions(IMF).The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising.Then,the AR model was introduced to improve the recognition rate of denatured biological tissues.The AR model order parameter was determined by the Akaike information criterion(AIC)and the characteristics of the AR coefficients were extracted.Finally,the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic(ROC).The experiments showed that the signal-to-noise ratio(SNR)and root mean square error(RMSE)of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition(VMD).The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment,and the support vectormachine(SVM)was used to identify the denatured biological tissue.The results show that compared with sample entropy,information entropy,and energy methods,the proposed IVMD-AR method can more effectively identify denatured biological tissue.The recognition rate of denatured biological tissue was higher,up to 93.0%.展开更多
In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed....In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.展开更多
In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signa...In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signal. We propose a fast estimation method based on spectrum entropy method. With 984 records of adult calcaneus clinical data, we estimate the validity of the backscatter signal using this method. The results of the proposed method and the results of experience-base judgement were compared and analyzed. And two key parameters, the signal range length and the segment number of the spectrum entropy, were analyzed. The results show when the signal range length is 13 I^s and the segment number is 15 20, this method can get the best result (accuracy〉95%, sensitivity〉99%, specificity〉87%), while taking little calculation time (1.5 ms). Therefore, this spectrum entropy method can satisfy the accuracy and real-time requirements in the ultrasonic estimation for cancellous bone.展开更多
基金Project (No. PRC 03-41/2003) supported by the Ministry of Con-struction of Cuba
文摘In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.
基金Supported by the National Natural Science Foundation of China(Grant No.51375217)
文摘Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal sampling rate and the quantity of sampling data.However,the pulse number of the signal must be known beforehand for the signal reconstruction procedure.The accuracy of this prior information directly affects the accuracy of the estimated parameters of the signal and influences the assessment of flaws,leading to a lower defect detection ratio.Although the pulse number can be pre-given by theoretical analysis,the process is still unable to assess actual complex random orientation defects.Therefore,this paper proposes a new method that uses singular value decomposition(SVD) for estimating the pulse number from sparse sampling data and avoids the shortcoming of providing the pulse number in advance for signal reconstruction.When the sparse sampling data have been acquired from the ultrasonic signal,these data are transformed to discrete Fourier coefficients.A Hankel matrix is then constructed from these coefficients,and SVD is performed on the matrix.The decomposition coefficients reserve the information of the pulse number.When the decomposition coefficients generated by noise according to noise level are removed,the number of the remaining decomposition coefficients is the signal pulse number.The feasibility of the proposed method was verified through simulation experiments.The applicability was tested in ultrasonic experiments by using sample flawed pipelines.Results from simulations and real experiments demonstrated the efficiency of this method.
基金The National Natural Science Foundation of China (No.51375217)。
文摘To achieve sparse sampling on a coded ultrasonic signal,the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse sampling for an ultrasonic signal pulse is presented.Differences between the pulse and the coded ultrasonic signal are analyzed,and a response mathematical model of the coded ultrasonic signal is established.A time-domain transform algorithm,called the high-order moment method,is applied to obtain a pulse stream signal to assist BFC ultrasonic signal sparse sampling.A sampling of the output signal with a uniform interval is then performed after modulating the pulse stream signal by a sampling kernel.FRI-based sparse sampling is performed using a self-made circuit on an aluminum alloy sample.Experimental results show that the sampling rate reduces to 0.5 MHz,which is at least 12.8 MHz in the Nyquist sampling mode.The echo peak amplitude and the time of flight are estimated from the sparse sampling data with maximum errors of 9.324%and 0.031%,respectively.This research can provide a theoretical basis and practical application reference for reducing the sampling rate and data volume in coded ultrasonic testing.
基金supported by National Natural Science Foundation of China (Grant No. 60672108, Grant No. 60372020)
文摘The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
文摘The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved variational mode decomposition(VMD)for noise echo signals is proposed.The number of decomposition layers of the traditional VMD is hard to determine,therefore,the center frequency similarity factor is firstly constructed and used as the judgment criterion to select the number of VMD decomposition layers adaptively;Secondly,VMD algorithm is used to decompose the echo signal into several modal components with a single modal component,and the useful echo components are extracted based on the features of the ultrasonic emission signal;Finally,the liquid density is calculated by extracting the amplitude and time of the echo from the modal components.The simulation results show that using the improved VMD to decompose the echo signal not only can improve the signal-to-noise ratio of the echo signal to 20.64 dB,but also can accurately obtain the echo information such as time and amplitude.Compared with the ensemble empirical mode decomposition(EEMD),this method effectively suppresses the modal aliasing,keeps the details of the signal to the maximum extent while suppressing noise,and improves the accuracy of the liquid density measurement.The density measurement accuracy can reach 0.21%of full scale.
基金The authors thank the financial support of Natural Science Foundation of China(U2031112)Natural Science Foundation of Hunan Province(2021JJ30469)Natural Science Youth Foundation of Hunan Province(2020JJ5396).
文摘During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode decomposition(IVMD)and autoregressive(AR)model was proposed,which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment.Firstly,the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions(IMF).The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising.Then,the AR model was introduced to improve the recognition rate of denatured biological tissues.The AR model order parameter was determined by the Akaike information criterion(AIC)and the characteristics of the AR coefficients were extracted.Finally,the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic(ROC).The experiments showed that the signal-to-noise ratio(SNR)and root mean square error(RMSE)of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition(VMD).The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment,and the support vectormachine(SVM)was used to identify the denatured biological tissue.The results show that compared with sample entropy,information entropy,and energy methods,the proposed IVMD-AR method can more effectively identify denatured biological tissue.The recognition rate of denatured biological tissue was higher,up to 93.0%.
基金supported by the National Natural Science Foundation of China(11174060,11327405)the Ph.D.Programs Foundation of the Ministry of Education of China(20110071130004,20130071110020)+1 种基金the Science and Technology Support Program of Shanghai(13441901900)the Program for New Century Excellent Talents in University(NCET-10-0349)
文摘In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.
基金supported by the National Natural Science Foundation of China(11327405,11525416,11604054,11504057)
文摘In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signal. We propose a fast estimation method based on spectrum entropy method. With 984 records of adult calcaneus clinical data, we estimate the validity of the backscatter signal using this method. The results of the proposed method and the results of experience-base judgement were compared and analyzed. And two key parameters, the signal range length and the segment number of the spectrum entropy, were analyzed. The results show when the signal range length is 13 I^s and the segment number is 15 20, this method can get the best result (accuracy〉95%, sensitivity〉99%, specificity〉87%), while taking little calculation time (1.5 ms). Therefore, this spectrum entropy method can satisfy the accuracy and real-time requirements in the ultrasonic estimation for cancellous bone.