期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms 被引量:4
1
作者 Itaf Ben Slimen Larbi Boubchir +1 位作者 Zouhair Mbarki Hassene Seddik 《The Journal of Biomedical Research》 CAS CSCD 2020年第3期151-161,共11页
The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective... The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods. 展开更多
关键词 ELECTROENCEPHALOGRAPHY epileptic seizure detection feature extraction dual-tree complex wavelet transform machine learning
下载PDF
Monitoring of Wind Turbine Blades Based on Dual-Tree Complex Wavelet Transform 被引量:1
2
作者 LIU Rongmei ZHOU Keyin YAO Entao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期140-152,共13页
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar... Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator. 展开更多
关键词 wind turbine blade structural health monitoring(SHM) fiber Bragg grating(FBG) dual-tree complex wavelet transform(DT-CWT)
下载PDF
Image inpainting using complex 2-D dual-tree wavelet transform
3
作者 YANG Jian-bin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2011年第1期70-76,共7页
The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr... The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm. 展开更多
关键词 Image inpainting dual-tree complex wavelet transform wavelet shrinkage method.
下载PDF
Seismic signal analysis based on the dual-tree complex wavelet packet transform
4
作者 XIE Zhou-min(谢周敏) WANG En-fu(王恩福) +2 位作者 ZHANG Guo-hong(张国宏) ZHAO Guo-cun(赵国存) CHEN Xu-geng(陈旭庚) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第z1期117-122,共6页
We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex contin... We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase. 展开更多
关键词 dual-tree complex wavelet packet transform instantaneous characteristics seismicsignalanalysis
下载PDF
Defects Recognition of 3D Braided Composite Based on Dual-Tree Complex Wavelet Packet Transform
5
作者 贺晓丽 王瑞 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期749-752,共4页
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a... Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites. 展开更多
关键词 3D braided composite dual-tree complex wavelet packet transform(DT-CWPT) ultrasonic wave
下载PDF
Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain 被引量:1
6
作者 Hong Fan Yiman Sun +3 位作者 Xiaojuan Zhang Chengcheng Zhang Xiangjun Li Yi Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期655-667,共13页
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand... To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation. 展开更多
关键词 undecimated dual-tree complex wavelet MR image segmentation multi-resolution Markov random field model
原文传递
NEW METHOD OF EXTRACTING WEAK FAILURE INFORMATION IN GEARBOX BY COMPLEX WAVELET DENOISING 被引量:19
7
作者 CHEN Zhixin XU Jinwu YANG Debin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期87-91,共5页
Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new... Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals. 展开更多
关键词 dual-tree complex wavelet transform Signal-denoising Gear fault diagnosis Early fault detection
下载PDF
Novel Face Recognition Method by Combining Spatial Domain and Selected Complex Wavelet Features 被引量:1
8
作者 张强 蔡云泽 许晓鸣 《Journal of Donghua University(English Edition)》 EI CAS 2011年第3期285-290,共6页
A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the v... A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the variation due to the illumination and facial expression changes. By adopting spectral regression and complex fusion technologies respectively, two improved neighborhood preserving discriminant analysis feature extraction methods were proposed to capture the face manifold structures and locality discriminatory information. Extensive experiments have been made to compare the recognition performance of the proposed method with some popular dimensionality reduction methods on ORL and Yale face databases. The results verify the effectiveness of the proposed method. 展开更多
关键词 face recognition neighborhood preserving discriminant analysis spectral regression complex fusion dual-tree complex wavelet transform feature selection
下载PDF
Recognition of Group Activities Using Complex Wavelet Domain Based Cayley-Klein Metric Learning
9
作者 Gensheng Hu Min Li +2 位作者 Dong Liang Mingzhu Wan Wenxia Bao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期592-603,共12页
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac... A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms. 展开更多
关键词 video surveillance group activity recognition non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT) Cayley-Klein metric learning
下载PDF
Low-light image enhancement based on Retinex theory and dual-tree complex wavelet transform 被引量:10
10
作者 YANG Mao-xiang TANG Gui-jin +3 位作者 LIU Xiao-hua WANG Li-qian CUI Zi-guan LUO Su-huai 《Optoelectronics Letters》 EI 2018年第6期470-475,共6页
In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts ... In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts an image from the RGB color space to the HSV color space and decomposes the V-channel by dual-tree complex wavelet transform. Next, an improved local adaptive tone mapping method is applied to process the low frequency components of the image, and a soft threshold denoising algorithm is used to denoise the high frequency components of the image. Then, the V-channel is rebuilt and the contrast is adjusted using white balance method. Finally, the processed image is converted back into the RGB color space as the enhanced result. Experimental results show that the proposed method can effectively improve the performance in terms of contrast enhancement, noise reduction and color reproduction. 展开更多
关键词 RETINEX theory dual-tree complex wavelet transform IMAGE ENHANCEMENT
原文传递
A Dual-Tree Complex Wavelet Transform-Based Model for Low-Illumination Image Enhancement 被引量:1
11
作者 GUAN Yurong Muhammad Aamir +4 位作者 Ziaur Rahman Zaheer Ahmed Dayo Waheed Ahmed Abro Muhammad Ishfaq HU Zhihua 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第5期405-414,共10页
Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a techniqu... Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a technique that is based on wavelets for optimizing images taken in low-light.First,the V channel is created by mapping an image’s RGB channel to the HSV color space.Second,the acquired V channel is decomposed using the dual-tree complex wavelet transform(DT-CWT)in order to recover the concentrated information within its high and low-frequency subbands.Thirdly,an adaptive illumination boost technique is used to enhance the visibility of a low-frequency component.Simultaneously,anisotropic diffusion is used to mitigate the high-frequency component’s noise impact.To improve the results,the image is reconstructed using an inverse DT-CWT and then converted to RGB space using the newly calculated V.Additionally,images are white-balanced to remove color casts.Experiments demonstrate that the proposed approach significantly improves outcomes and outperforms previously reported methods in general. 展开更多
关键词 image enhancement dual-tree complex wavelet transform(DT-CWT) anisotropic diffusion low-light images
原文传递
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar
12
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar dual-tree complex wavelet transform(DT-CWT) Deep learning
下载PDF
Adaptive multiscale wavelet-guided periodic sparse representation for bearing incipient fault feature extraction
13
作者 NIU MaoGui JIANG HongKai YAO RenHe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第11期3585-3596,共12页
Currently, accurately extracting early-stage bearing incipient fault features is urgent and challenging. This paper introduces a novel method called adaptive multiscale wavelet-guided periodic sparse representation(AM... Currently, accurately extracting early-stage bearing incipient fault features is urgent and challenging. This paper introduces a novel method called adaptive multiscale wavelet-guided periodic sparse representation(AMWPSR) to address this issue. For the first time, the dual-tree complex wavelet transform is applied to construct the linear transformation for the AMWPSR model.This transform offers superior shift invariance and minimizes spectrum aliasing. By integrating this linear transformation with the generalized minimax concave penalty term, a new sparse representation model is developed to recover faulty impulse components from heavily disturbed vibration signals. During each iteration of the AMWPSR process, the impulse periods of sparse signals are adaptively estimated, and the periodicity of the latest sparse signal is augmented using the final estimated period. Simulation studies demonstrate that AMWPSR can effectively estimate periodic impulses even in noisy environments, demonstrating greater accuracy and robustness in recovering faulty impulse components than existing techniques.Further validation through research on two sets of bearing life cycle data shows that AMWPSR delivers superior fault diagnosis results. 展开更多
关键词 incipient fault feature extraction dual-tree complex wavelet transform generalized minimax concave penalty periodic sparse representation
原文传递
基于双树复小波和奇异差分谱的齿轮故障诊断研究 被引量:13
14
作者 胥永刚 孟志鹏 +1 位作者 陆明 付胜 《振动与冲击》 EI CSCD 北大核心 2014年第1期11-16,23,共7页
针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频... 针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频谱中难以准确地得到故障频率。然后对包含故障特征的分量构建Hankel矩阵并进行奇异值分解,求奇异值差分谱曲线,确定奇异值个数进行SVD重构降噪,由此实现对故障特征信息的提取。最后再求希尔伯特包络谱,便能准确地得到故障频率。实验结果和工程应用表明,该方法可以有效地提取齿轮的故障特征信息,验证了方法的可行性和有效性。 展开更多
关键词 双树复小波 HANKEL矩阵 奇异值 奇异差分谱 故障诊断 dual-tree complex wavelet transform (DT-CWT ) singular value decomposition (SVD)
下载PDF
基于非下采样双树复小波域的双变量模型去噪算法 被引量:8
15
作者 殷明 白瑞峰 +2 位作者 邢燕 庞纪勇 魏远远 《光子学报》 EI CAS CSCD 北大核心 2014年第10期131-137,共7页
提出一种基于非下采样双树复小波域的图像去噪算法.首先分析非下采样双树复小波变换同一方向实部与虚部小波系数之间的相关性,通过实例及统计规律得到其联合概率分布近似服从于椭圆边界的单峰各向异性二维非高斯分布.然后把双变量统计... 提出一种基于非下采样双树复小波域的图像去噪算法.首先分析非下采样双树复小波变换同一方向实部与虚部小波系数之间的相关性,通过实例及统计规律得到其联合概率分布近似服从于椭圆边界的单峰各向异性二维非高斯分布.然后把双变量统计模型引入到非下采样双树复小波变换实部和虚部小波系数中,将实部与虚部小波系数的联合概率分布作为双变量先验模型,得到了非下采样双树复小波变换自适应各向异性双变量去噪模型.该模型可以很好地体现实部与虚部小波系数之间的相关性.运用最大后验概率来估计从含噪图像的小波系数恢复原图像的系数,达到去噪目的.最后根据该模型得到了一种具有闭式解的去噪算法.实验表明:该算法比经典算法提高了一定的峰值信噪比,且有良好的视觉效果,较好地保持了图像中的纹理特征. 展开更多
关键词 非下采样双树复小波变换 图像去噪 非高斯分布 双变量模型 最大后验概率
下载PDF
非抽样双树复小波域的红外可见光图像融合 被引量:4
16
作者 王旭辉 周岩 周苑 《计算机工程与设计》 北大核心 2017年第3期729-734,共6页
为提高红外与可见光图像的融合精度,借助非抽样双树复小波的平移不变性和良好的方向选择性,提出非负矩阵分解和区域方差能量的融合方法。通过对严格配准的红外与可见光图像进行非抽样双树复小波变换获取高低频信息,对低频子带系数采用... 为提高红外与可见光图像的融合精度,借助非抽样双树复小波的平移不变性和良好的方向选择性,提出非负矩阵分解和区域方差能量的融合方法。通过对严格配准的红外与可见光图像进行非抽样双树复小波变换获取高低频信息,对低频子带系数采用基于块主元旋转的非负矩阵分解的融合方法,对高频子带系数选用结合区域方差能量的对比度进行融合。对融合后的系数采用非抽样双树复小波逆变换重构得到融合图像,对融合结果进行主观视觉和客观评价。对比实验结果表明,该算法具有较好的主观视觉效果,客观评价指标有明显提高,验证了提出算法的有效性。 展开更多
关键词 图像融合 非抽样双树复小波变换 非负矩阵分解 块主元旋转法 加权区域能量
下载PDF
非抽样双树复小波域的BPP-NMF图像融合 被引量:1
17
作者 陈清江 魏冰蔗 +1 位作者 柴昱洲 张彦博 《液晶与显示》 CAS CSCD 北大核心 2016年第8期784-792,共9页
提出了一种非抽样双树复小波变换(UDT-CWT)与基于块主元旋转的非负矩阵分解(BPP-NMF)相结合的多聚焦图像融合算法。利用UDT-CWT具有完美的平移不变性及良好的方向选择性,首先对图像进行多尺度、多方向分解并得到低频子带和高频子带系数... 提出了一种非抽样双树复小波变换(UDT-CWT)与基于块主元旋转的非负矩阵分解(BPP-NMF)相结合的多聚焦图像融合算法。利用UDT-CWT具有完美的平移不变性及良好的方向选择性,首先对图像进行多尺度、多方向分解并得到低频子带和高频子带系数;然后对低频子带系数采用块主元旋转的非负矩阵分解的融合策略,高频系数则选用高斯加权区域能量与区域标准差一致性选择的融合准则。最后对融合后的系数进行UDT-CWT逆变换得到重构图像。选用多组多聚焦图像进行融合并对融合结果进行主观视觉、客观方面的评价。试验结果表明,该融合算法不仅具有良好的视觉效果,同时在客观评价指标也优于一般的融合策略,验证了该算法的有效性。 展开更多
关键词 非抽样双树复小波变换 非负矩阵分解 块主元旋转法 加权区域能量 图像融合
下载PDF
基于主成分分析和双树复小波变换的CT和MRI图像融合改进算法研究 被引量:1
18
作者 张媛 陆小妍 +2 位作者 郭群 邱建博 缪正飞 《中国医学装备》 2022年第4期7-12,共6页
目的:提出一种级联主成分分析(PCA)与双树复小波变换(DTCWT)的CT和MRI图像融合新算法,以获得高质量的CT和MRI融合图像。方法:基于级联PCA与DTCWT的融合算法采用非抽样小波变换(UDWT),将已配准的CT和MRI图像分解成为不同尺度的低频和高... 目的:提出一种级联主成分分析(PCA)与双树复小波变换(DTCWT)的CT和MRI图像融合新算法,以获得高质量的CT和MRI融合图像。方法:基于级联PCA与DTCWT的融合算法采用非抽样小波变换(UDWT),将已配准的CT和MRI图像分解成为不同尺度的低频和高频子图像;采用PCA融合规则和UDWT逆变换,获得初次融合子图像;采用DTCWT变换将融合子图像分解为实数与复数部分;采用最大值取大融合规则和DTCWT逆变换获得CT与MRI融合图像。选用哈佛大学脑图库中CT和MRI图像进行仿真实验,采用定性与定量结合评估融合图像质量,并将本研究算法所得融合效果与离散小波算法(DWT)、非抽样小波变换(UDWT)及PCA等算法进行比较。结果:定性分析显示,基于级联PCA与DTCWT的融合算法所得CT与MRI融合图像对比度最强,边缘信息最丰富且伪影最弱。定量结果中融合算法所得空间频率、均方误差、边缘相似度、互相关和平方差数值分别达到42.683、0.002、0.925、0.978和0.016,较其他融合算法提升8.71%~194.52%、98.46%~99.49%、8.95%~33.48%、6.19%~230.40%和42.86%~95.83%。结论:基于级联PCA与DTCWT的融合算法性能优越,能获得高质量的CT和MRI融合图像。 展开更多
关键词 图像融合 非抽样小波变换(UDWT) 主成分分析(PCA) 双树复小波变换(DTCWT) 融合算法
下载PDF
基于非抽样双树复小波变换幅值相位信息的图像去噪算法 被引量:2
19
作者 吴建宁 石满红 兴志 《红外技术》 CSCD 北大核心 2018年第7期647-653,共7页
提出了一种非抽样双树复小波变换域结合幅值阈值化和相位正则化的自适应图像去噪算法。首先将非抽样双树复小波变换系数进行幅值相位表示,在分析了幅值分布特点后,使用瑞利分布模型作为系数幅值的先验分布,然后在贝叶斯去噪框架下推导... 提出了一种非抽样双树复小波变换域结合幅值阈值化和相位正则化的自适应图像去噪算法。首先将非抽样双树复小波变换系数进行幅值相位表示,在分析了幅值分布特点后,使用瑞利分布模型作为系数幅值的先验分布,然后在贝叶斯去噪框架下推导出闭式形式的阈值函数,为了更好地抑制噪声,我们亦对相位信息进行平滑处理,最后通过逆非抽样双树复小波变换得到去噪图像。由于同时对幅值和相位信息进行处理,实验显示所提算法抑制噪声效果明显,与一些经典算法相比,本文方法在主、客观上皆获得了有竞争力的结果。 展开更多
关键词 图像去噪 非抽样双树复小波变换 瑞利分布模型 相位正则化
下载PDF
Facial Expression Recognition Based on the Q-shift DT-CWT and Rotation Invariant LBP 被引量:3
20
作者 陈蕾 王加俊 孙兵 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期71-75,共5页
In this paper, a novel method based on dual-tree complex wavelet transform(DT-CWT) and rotation invariant local binary pattern(LBP) for facial expression recognition is proposed. The quarter sample shift (Q-shift) DT-... In this paper, a novel method based on dual-tree complex wavelet transform(DT-CWT) and rotation invariant local binary pattern(LBP) for facial expression recognition is proposed. The quarter sample shift (Q-shift) DT-CWT can provide a group delay of 1/4 of a sample period, and satisfy the usual 2-band filter bank constraints of no aliasing and perfect reconstruction. To resolve illumination variation in expression verification, low-frequency coefficients produced by DT-CWT are set zeroes, high-frequency coefficients are used for reconstructing the image, and basic LBP histogram is mapped on the reconstructed image by means of histogram specification. LBP is capable of encoding texture and shape information of the preprocessed images. The histogram graphs built from multi-scale rotation invariant LBPs are combined to serve as feature for further recognition. Template matching is adopted to classify facial expressions for its simplicity. The experimental results show that the proposed approach has good performance in efficiency and accuracy. 展开更多
关键词 facial expression recognition dual-tree complex wavelet transform (DT-CWT) local binary pattern(LBP) HISTOGRAM similarity measure
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部