The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relation...The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relationship between the configuration of the joint spaceand the manipulating flexibility of the underactuated redundant manipulator is analyzed, a newmeasure of manipulating flexibility ellipsoid for the underactuated redundant manipulator withpassive joints in locked mode is proposed, which can be used to get the optimal configuration forthe realization of the self-reconfiguration control. Furthermore, a time-varying nonlinear controlmethod based on harmonic inputs is suggested for fulfilling the self-reconfiguration. A simulationexample of a three-DOFs underactuated manipulator with one passive joint features some aspects ofthe investigations.展开更多
In this paper, first-order and second-order sliding mode controllers for underactuated manipulators are proposed. Sliding mode control(SMC) is considered as an effective tool in different studies for control systems. ...In this paper, first-order and second-order sliding mode controllers for underactuated manipulators are proposed. Sliding mode control(SMC) is considered as an effective tool in different studies for control systems. However, the associated chattering phenomenon degrades the system performance. To overcome this phenomenon and track a desired trajectory, a twisting, a supertwisting and a modified super-twisting algorithms are presented respectively. The stability analysis is performed using a Lyapunov function for the proposed controllers. Further, the four different controllers are compared with each other. As an illustration, an example of an inverted pendulum is considered. Simulation results are given to demonstrate the effectiveness of the proposed approaches.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50375007,No.50475177).
文摘The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relationship between the configuration of the joint spaceand the manipulating flexibility of the underactuated redundant manipulator is analyzed, a newmeasure of manipulating flexibility ellipsoid for the underactuated redundant manipulator withpassive joints in locked mode is proposed, which can be used to get the optimal configuration forthe realization of the self-reconfiguration control. Furthermore, a time-varying nonlinear controlmethod based on harmonic inputs is suggested for fulfilling the self-reconfiguration. A simulationexample of a three-DOFs underactuated manipulator with one passive joint features some aspects ofthe investigations.
文摘In this paper, first-order and second-order sliding mode controllers for underactuated manipulators are proposed. Sliding mode control(SMC) is considered as an effective tool in different studies for control systems. However, the associated chattering phenomenon degrades the system performance. To overcome this phenomenon and track a desired trajectory, a twisting, a supertwisting and a modified super-twisting algorithms are presented respectively. The stability analysis is performed using a Lyapunov function for the proposed controllers. Further, the four different controllers are compared with each other. As an illustration, an example of an inverted pendulum is considered. Simulation results are given to demonstrate the effectiveness of the proposed approaches.