期刊文献+
共找到77,243篇文章
< 1 2 250 >
每页显示 20 50 100
SDH-FCOS:An Efficient Neural Network for Defect Detection in Urban Underground Pipelines
1
作者 Bin Zhou Bo Li +2 位作者 Wenfei Lan Congwen Tian Wei Yao 《Computers, Materials & Continua》 SCIE EI 2024年第1期633-652,共20页
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect... Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model. 展开更多
关键词 Urban underground pipelines defect detection SDH-FCOS feature fusion SPPF dual detection heads
下载PDF
Building Information Modeling-Based Secondary Development System for 3D Modeling of Underground Pipelines 被引量:2
2
作者 Jun Chen Rao Hu +1 位作者 Xianfeng Guo Feng Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期647-660,共14页
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici... Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management. 展开更多
关键词 Building information modeling secondary development underground pipeline 3D modeling visualization.
下载PDF
Response of underground pipeline through fault fracture zone to random ground motion
3
作者 Dai Wang Zhuobin Wei Jianwen Liang 《Earthquake Science》 CSCD 2011年第4期351-363,共13页
It is assumed that a pipeline is laid through a vertical fault fracture zone,and is excited by seismic ground motion modelled as stationary stochastic process.For horizontal incidence of waves,the cross-PSD (Power Spe... It is assumed that a pipeline is laid through a vertical fault fracture zone,and is excited by seismic ground motion modelled as stationary stochastic process.For horizontal incidence of waves,the cross-PSD (Power Spectral Density) function is developed using wave propagation theory,while for vertical incidence of waves the cross-PSD function is composed by auto-PSD model,coherence model and site response model.As the seismic input,the cross-PSD function is used to calculate the the axial and lateral seismic responses of underground pipeline through the fracture zone.The results show that the incident directions of seismic waves,width and soil property of the fracture zone have great influence on underground pipeline.It is suggested that the flexible joints with appropriate stiffness should be added into the pipeline near the interfaces between the fracture zone and the surrounded media. 展开更多
关键词 fault fracture zone flexible joint underground pipeline seismic excitation
下载PDF
Electromagnetic Fields and Induced Voltages on Underground Pipeline in the Vicinity of AC Traction System 被引量:8
4
作者 Bosko Milesevic Bozidar Filipovic-Grcic Tomislav Radosevic 《Journal of Energy and Power Engineering》 2014年第7期1333-1340,共8页
关键词 交流牵引系统 感应电压 电磁场 地下管线 计算结果 地下燃气管道 安全准则 电气设备
下载PDF
Design of Underground Pipelines under Arbitrary Seismic Loading
5
作者 Diyorbek Bekmirzaev 《Open Journal of Applied Sciences》 2015年第5期226-232,共7页
On the basis of Hamilton-Ostrogradskiy variation principle a system of equations of linear pipeline vibrations interacting with surrounding soil is derived with appropriate boundary and initial conditions under arbitr... On the basis of Hamilton-Ostrogradskiy variation principle a system of equations of linear pipeline vibrations interacting with surrounding soil is derived with appropriate boundary and initial conditions under arbitrary direction of seismic effect. Dynamic problem of underground pipeline is solved by finite difference method of the second order of accuracy with different combinations of boundary conditions under the effect of seismic load on a given law with arbitrary direction. Numerical implementation of the problem is realized. 展开更多
关键词 underground pipeline Seismo-Dynamics BOUNDARY Conditions SEISMIC Effect pipeline-Soil” System Interaction Finite DIFFERENCE Method
下载PDF
Spatial analysis for underground pipeline network information system
6
作者 XIA Chun-lin, MA Zhen-li, CAO Guang-fu (Liaoning Technical University, Fuxin 123000, China) 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期28-31,共4页
It is appropriate to establish underground pipeline network information system based on MapInfo software platform in many enterprises when taking account of the firm size and data amount. Since some functions of MapIn... It is appropriate to establish underground pipeline network information system based on MapInfo software platform in many enterprises when taking account of the firm size and data amount. Since some functions of MapInfo in spatial analysis are not very strong relatively, it is difficult for MapInfo to fulfill some common functions about pipeline analysis such as spatial configuration, three-dimensional display, pipe exploding and so on. The thought and arithmetic to solve the above problems are approached based on respect theories of computer graphics and graph theory. A variety of function moduli have developed by means of senior computer languages and the system integration is realized. 展开更多
关键词 pipeline NETWORK information system SPATIAL CONFIGURATION ANALYSIS 3D DISPLAY NETWORK ANALYSIS
下载PDF
Pipeline Flex血流导向装置治疗颅内动脉瘤疗效观察
7
作者 谢兵 韩昊锦 +2 位作者 李锐韬 韩志安 丁明祥 《海南医学》 CAS 2024年第1期39-42,共4页
目的观察使用Pipeline Flex血流导向装置(PED)治疗颅内动脉瘤的疗效及安全性。方法回顾性分析2020年6月至2022年6月中山市人民医院使用PED治疗的25例颅内动脉瘤(共29个动脉瘤)患者的临床资料,25例患者中2例存在2个串联动脉瘤,1例有3个... 目的观察使用Pipeline Flex血流导向装置(PED)治疗颅内动脉瘤的疗效及安全性。方法回顾性分析2020年6月至2022年6月中山市人民医院使用PED治疗的25例颅内动脉瘤(共29个动脉瘤)患者的临床资料,25例患者中2例存在2个串联动脉瘤,1例有3个串联动脉瘤。29个动脉瘤分布在颈内动脉26个,大脑中动脉1个,椎基底动脉2个。术后进行临床及影像学随访,评估术后即刻动脉瘤栓塞情况和出院时患者改良Rankin评分量表(mRS),并在术后6个月及12个月时随访进行影像学检查以明确动脉瘤闭塞情况。结果25例患者均成功置入PED,其中15个动脉瘤联合弹簧圈栓塞,14个动脉瘤单独置入PED支架。术中有1例使用球囊扩张,24例经导丝微导管按摩均贴壁良好,术后临床随访中1例(4%)患者有缺血症状。术后6个月随访22个(75.9%)动脉瘤完全闭合,术后12个月随访2个(6.9%)动脉瘤影像学随访中未见闭合,27个(93.1%)动脉瘤完全闭合。结论PED治疗颅内动脉瘤短期随访安全有效,并发症较少,动脉瘤闭塞率较高。 展开更多
关键词 颅内动脉瘤 血流导向装置 治疗效果 并发症
下载PDF
Research of Risk Identification and Prevention of Underground Pressure Pipelines Damage Caused by External Disturbance
8
作者 Xinxing Han Zhuangzhuang Zhang 《Journal of Architectural Research and Development》 2023年第3期31-39,共9页
External disturbance is an important cause of underground pressure pipeline damage,which leads to accidents,and it is crucial to study the risk of damage caused by external disturbance and come up with proper preventi... External disturbance is an important cause of underground pressure pipeline damage,which leads to accidents,and it is crucial to study the risk of damage caused by external disturbance and come up with proper prevention and control measures.We reviewed literature on risk identification of underground pressure pipelines damage due to external disturbance was conducted,and a list of risk factors was formed.Based on the list of risk factors,fault tree analysis was carried out on underground pressure pipelines damage caused by external disturbances,and risk prevention and control measures were proposed through the calculation of minimum cut sets,minimum path sets,and structural importance,in hopes of providing reference for the normal operation of underground pressure pipelines. 展开更多
关键词 underground pressure pipeline damage External disturbance Risk identification Fault tree Risk prevention and control
下载PDF
Dynamic analysis of buried pipeline with and without barrier system subjected to underground detonation
9
作者 Chaidul Haque Chaudhuri Deepankar Choudhury 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期95-105,共11页
Failure of pipe networks due to blast loads resulting from terrorist attacks or construction facilities, may cause economic loss, environmental pollution, source of firing or even it may lead to a disaster. The presen... Failure of pipe networks due to blast loads resulting from terrorist attacks or construction facilities, may cause economic loss, environmental pollution, source of firing or even it may lead to a disaster. The present work develops a closed-form solution of buried pipe with barrier system subjected to subsurface detonation. The solution is derived based on the concept of double-beam system. Euler Bernoulli's beams are used to simulate the buried pipe and the barrier system. Soil is idealized as viscoelastic foundation along with shear interaction between discrete Winkler springs(advanced soil model). The finite SineFourier transform is employed to solve the coupled partial differential equations. The solution is validated with past studies. A parametric study is conducted to investigate the influence of TNT charge weight, pipe material, damping ratio and TNT offset on the response of buried pipe with and without barrier system. Further a statistical analysis is carried out to get the significant soil and pipe input parameters. It is perceived that peak pipe displacements for both the cases(with and without barrier) are increases with increasing the weight of TNT charge and decreases with increasing the damping ratio and TNT offset. The deformation of pipe also varies with pipe material. Pipe safety against blast loads can be ensured by providing suitable barrier layer. The present study can be utilized in preliminary design stage as an alternative to expensive numerical analysis or field study. 展开更多
关键词 Buried pipeline Subsurface detonation Analytical solution Viscoelastic foundation Protective barrier
下载PDF
Preliminary research and scheme design of deep underground in situ geo-information detection experiment for Geology in Time
10
作者 Heping Xie Ru Zhang +13 位作者 Zetian Zhang Yinshuang Ai Jianhui Deng Yun Chen Yong Zhou Mingchuan Li Liqiang Liu Mingzhong Gao Zeqian Yang Weiqiang Ling Heng Gao Qijun Hao Kun Xiao Chendi Lou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the L... The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering. 展开更多
关键词 Deep underground Geology in Time China Jinping underground Laboratory In situ detection
下载PDF
New insights into the deposition of natural gas hydrate on pipeline surfaces:A molecular dynamics simulation study
11
作者 Jun Zhang Hai-Qiang Fu +7 位作者 Mu-Zhi Guo Zhao Wang Li-Wen Li Qi Yin You-Guo Yan Wei Wei Wei-Feng Han Jie Zhong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期694-704,共11页
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N... Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces. 展开更多
关键词 DEPOSITION Natural gas hydrate pipelines Water affinity Adhesion strength
下载PDF
Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling
12
作者 Peng Qiao Shuangshuang Lan +1 位作者 Hongbiao Gu Zhengtan Mao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1381-1399,共19页
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co... Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state. 展开更多
关键词 underground reservoir fluid-structure coupling numerical simulation pumped storage power station filling and discharge
下载PDF
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
13
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
下载PDF
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6,2023 Türkiye earthquake doublet
14
作者 Xiaoqing Fan Libao Zhang +2 位作者 Juke Wang Yefei Ren Aiwen Liu 《Earthquake Science》 2024年第1期78-90,共13页
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw... In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized. 展开更多
关键词 Türkiye earthquake fault displacement near-fault ground motion velocity pulse water supply pipeline
下载PDF
Dynamic plugging regulating strategy of pipeline robot based on reinforcement learning
15
作者 Xing-Yuan Miao Hong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期597-608,共12页
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p... Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process. 展开更多
关键词 pipeline isolation plugging robot Plugging-induced vibration Dynamic regulating strategy Extreme learning machine Improved sparrow search algorithm Modified Q-learning algorithm
下载PDF
Microscopic experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs
16
作者 JIANG Tongwen QI Huan +4 位作者 WANG Zhengmao LI Yiqiang WANG Jinfang LIU Zheyu CAO Jinxin 《Petroleum Exploration and Development》 SCIE 2024年第1期203-212,共10页
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic... Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee. 展开更多
关键词 water-invaded gas-reservoir underground gas storage cyclical injection-production gas-water contact gas storage and production rate UGS capacity expansion control method
下载PDF
Development of a Low-Cost Prototype System for Pipeline Operational and Vandalism Spillage Detection and Validation Framework
17
作者 Buloere Florence Ekeu-Wei Iguniwari Thomas Ekeu-Wei 《Advances in Internet of Things》 2024年第2期21-35,共15页
Crude oil spillage is a major challenge in Nigeria. It affects the environment, health, life, and livelihood of residents of the Niger Delta region, where oil is explored, processed, and transported via a network of p... Crude oil spillage is a major challenge in Nigeria. It affects the environment, health, life, and livelihood of residents of the Niger Delta region, where oil is explored, processed, and transported via a network of pipelines. Oil spillage is primarily caused by vandalization/sabotage and operational issues such as corrosion, equipment failure, operation, and maintenance errors. Thus, prompt response is required to mitigate the impact of oil spills. In this study, we deployed low-cost Arduino systems, including sensors (vibration and flow), modules (GPS and Wifi) and an IoT platform (ThingSpeak) to detect spillage caused by vandalism and operational inefficiencies proactively. The results demonstrate that low-cost sensors can detect changes in the flow volume between the inflow and outflow attributable to spillage, and vibration shocks caused by vandalism can be detected and linked to the cause of the spillage and communicated in real time to inform response action. Moreover, we proposed a framework for field validation utilizing KoboToolBox (a crowdsourcing/citizen science platform). The prototype system designed and programmed showed promising results, as it could detect spillage for vandalism and operational scenarios in real-time, quantify the volume of spillage, and identify the location and time of spillage occurrence;indicators relevant for response planning to minimize the impact of oil spillage. A video demonstration of the prototype system developed is accessible via: https://youtu.be/wKa9MZvYf1w. . 展开更多
关键词 Crude Oil LEAKAGE pipeline VANDALISM Arduino Crowdsourcing Niger Delta
下载PDF
Prediction on Failure Pressure of Pipeline Containing Corrosion Defects Based on ISSA-BPNNModel
18
作者 Qi Zhuang Dong Liu Zhuo Chen 《Energy Engineering》 EI 2024年第3期821-834,共14页
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man... Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance. 展开更多
关键词 Oil and gas pipeline corrosion defect failure pressure prediction sparrow search algorithm BP neural network logistic chaotic map
下载PDF
Underground Pipeline Surveillance with an Algorithm Based on Statistical Time-Frequency Acoustic Features
19
作者 Tianlei Wang Jiuwen Cao +1 位作者 Ru Xu Jianzhong Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期358-371,共14页
Underground pipeline networks suffer from severe damage by earth-moving devices due to rapid urbanization.Thus,designing a round-the-clock intelligent surveillance system has become crucial and urgent.In this study,we... Underground pipeline networks suffer from severe damage by earth-moving devices due to rapid urbanization.Thus,designing a round-the-clock intelligent surveillance system has become crucial and urgent.In this study,we develop an acoustic signal-based excavation device recognition system for underground pipeline protection.The front-end hardware system is equipped with an acoustic sensor array,an Analog-to-Digital Converter(ADC)module(ADS1274),and an industrial processor Advanced RISC Machine(ARM)cortex-A8 for signal collection and algorithm implementation.Then,a novel Statistical Time-Frequency acoustic Feature(STFF)is proposed,and a fast Extreme Learning Machine(ELM)is adopted as the classifier.Experiments on real recorded data show that the proposed STFF achieves better discriminative capability than the conventional acoustic cepstrum features.In addition,the surveillance platform is applicable for encountering big data owing to the fast learning speed of ELM. 展开更多
关键词 underground pipeline surveillance time-frequency feature excavation device recognition Extreme Learning Machine(ELM)
原文传递
pipeline栓塞装置治疗大脑中动脉动脉瘤的疗效:一项回顾性多中心研究 被引量:1
20
作者 张莹 罗斌 +17 位作者 康慧斌 刘健 张义森 杨新健 张鸿祺 李天晓 买买提力·艾沙 毛国华 宋冬雷 王云彦 冯文峰 汪阳 史怀璋 万杰清 刘建民 管生 赵元立 王超 《中国临床神经外科杂志》 2023年第4期225-229,共5页
目的 探讨pipeline栓塞装置(PED)治疗大脑中动脉(MCA)动脉瘤的临床效果。方法 回顾性分析2014年11月至2019年10月我国14个临床中心采用PED治疗的33例MCA动脉瘤的临床资料、影像学资料和随访资料。结果 33例共39个动脉瘤,使用37个PED。3... 目的 探讨pipeline栓塞装置(PED)治疗大脑中动脉(MCA)动脉瘤的临床效果。方法 回顾性分析2014年11月至2019年10月我国14个临床中心采用PED治疗的33例MCA动脉瘤的临床资料、影像学资料和随访资料。结果 33例共39个动脉瘤,使用37个PED。33例完成临床随访,30例(36个动脉瘤)完成影像随访;随访时间4~22个月,平均(10.6±6.3)个月;动脉瘤完全或近全闭塞30个(83.3%,30/36);相对于单纯PED治疗组(71.4%),PED辅助弹簧圈栓塞组动脉瘤闭塞率更高(100%;P=0.031);预后不良(m RS评分>2分)3例(9.1%),预后良好(mRS评分≤2分)30例(90.9%);术后并发症发生率为24.2%(8/33),术前规律服用双抗药物3 d以上病人术后并发症发生率明显低于未规律服用双抗药物的病人(P=0.033)。结论 MCA动脉瘤可以采用PED治疗,疗效较满意。对于直径大、形态不规则的MCA动脉瘤,可使用PED结合弹簧圈栓塞治疗以获得更高的闭塞率。术前、术后应规范应用双抗药物以减少缺血、出血并发症。 展开更多
关键词 颅内动脉瘤 大脑中动脉 血流导向装置 pipeline栓塞装置(PED) 疗效
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部