The firn aquifer beneath the Greenland Ice Sheet may play a significant role in rising sea level. Both traditional mechanical drilling and electric thermal drilling are poorly adapted for effective, low-disturbance sa...The firn aquifer beneath the Greenland Ice Sheet may play a significant role in rising sea level. Both traditional mechanical drilling and electric thermal drilling are poorly adapted for effective, low-disturbance sampling in firn aquifers. We propose using a vibrocoring technique for the undisturbed sampling of dry firn and firn aquifer layers. A remote-controlled vibrocorer is designed to obtain 1-m-long cores with a diameter of 100 mm. The depth capacity of the system is approximately 50 m. The total weight of the vibrocoring system with the surface auxiliary equipment is approximately 110 kg, and corer assembly itself weighs ~60 kg.展开更多
Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure a...Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.展开更多
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat...The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.展开更多
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ...Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.展开更多
The unsaturated undisturbed quaternary system middle pleistocene loess,a typical unsaturated soil,often occurs in the implementation of western development strategy.To obtain the shearing strength characteristics of t...The unsaturated undisturbed quaternary system middle pleistocene loess,a typical unsaturated soil,often occurs in the implementation of western development strategy.To obtain the shearing strength characteristics of this unsaturated undisturbed loess,based on the analysis of mineral composition,the triaxial shear test of undisturbed quaternary system middle pleistocene loess under different moisture contents is conducted with the specialized triaxial instrument for unsaturated soil.The test results show that the mainly mineral composition of undisturbed quaternary system middle pleistocene loess is quartz and albite.Under the same confining pressure,the matric suction increases with the decrease of moisture content.The smaller the moisture content,the larger the matric suction;the higher the moisture content,the lower the matric suction.Under the same moisture content,the matric suction increases with the confining pressure and reaches a maximum when the confining pressure is 100 kPa,and then decreases with the increase of confining pressure.This phenomenon is closely related to the grain contact tightness of soil mass under high confining pressure.According to the triaxial test of loess,the sample of loess experiences 4 stages from loading to failure:1) compaction stage;2) compression stage;3) microcrack developing stage;4) shear failure stage.The test sample is of brittle failure(weak softening)under low moisture content and confining pressure.With the decrease of matric suction and the increase of consolidated confining pressure,the stress-strain curve changes from softening type to ideal plastic type.In the shearing strength parameters of unsaturated undisturbed loess,the influence of moisture content on internal friction angle is small,but that on cohesive force is obvious.Therefore,the shearing strength of unsaturated undisturbed loess is higher than that of saturated undisturbed loess and varies with the moisture content.展开更多
In recent years, reconstituted small samples have often been used to assess the performance of radial consolidation due to prefabricated vertical drains(PVDs), but the permeability and compressibility of samples of un...In recent years, reconstituted small samples have often been used to assess the performance of radial consolidation due to prefabricated vertical drains(PVDs), but the permeability and compressibility of samples of undisturbed soil often differ from those of the remoulded ones. The problem seems more complex in marine environment due to the presence of random coarse particles including gravels, shells and natural partings. Performing small-scale laboratory experiment with reconstituted samples, especially in marine environment, cannot predict the exact soil behaviour in the field. This paper describes an experimental programme that measures radial consolidation using a conventional Rowe cell and a largescale consolidometer, where the samples of undisturbed soil obtained from a site along the Pacific Highway(north of Sydney) were compared using measured settlements and excess pore pressures.Moreover, this paper highlights the implications of the smear effect and sample size influence, which are imperative in translating the laboratory testing practices to actual real-life behaviour. The effect of vacuum pressure on the coefficient of radial consolidation of a large-scale undisturbed test specimen is also discussed. The paper demonstrates that the extent of smear zone in the field can be very similar to the large-scale laboratory consolidation test using a scaled-down drain and mandrel, but considerably different from the data obtained for small laboratory specimens.展开更多
The undisturbed ground temperatures are important for design of the ground heat exchangers in ground source heat pump (GSHP) systems. In this paper, the undisturbed ground temperatures measured in two different me...The undisturbed ground temperatures are important for design of the ground heat exchangers in ground source heat pump (GSHP) systems. In this paper, the undisturbed ground temperatures measured in two different methods are presented. The investigation was carried out in two cases. The temperature measured with the direct method is assumed to give the correct undisturbed ground temperature profile. The temperature measured with indirect method overestimates the undisturbed ground temperature by 2.1℃ and 1.7~C. This difference is mainly caused by the circulation pump and ambient air to the fluid. Therefore, the results that are decreased about 2℃ as compared with the indirect measured are recommended to estimate the undisturbed ground temperature in situ measuring. A smaller pump or deeper borehole or mild weather would result in a more correct temperature. Because the undisturbed ground temperature is affected by many factors. Whether or not these conclusions are correct to other areas, this would need further investigation.展开更多
The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its ...The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its behaviors of undisturbed and reconstituted frozen soils at temperatures close to 0 ℃. A series of triaxial compression tests(TCT) were performed by using a developed testing apparatus and a matching specimen-preparation method. The confinement was applied from air pressure, the temperature in the specimen was maintained using two-end refrigeration, and multi-stage loading on a single specimen was adopted to determine the strength. The test results showed that the strength, both for the undisturbed and reconstituted frozen-soil specimens, was significantly dependent on the temperatures and independent of the applied confining pressures. Additionally, the strength of undisturbed frozen soils was about 1.6 times more than that for reconstituted frozen soils. These observations were closely associated with the structures existing between pore-ice and gravels with large diameters.展开更多
There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional ...There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus de-veloped by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consoli-dation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress,initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio wereinvestigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientationangle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate prin-cipal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic cou-pling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stressdirections during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.展开更多
Water quality testing was compulsory for management of safe and reliable water sources. Various sources of pollution and destruction of mangrove forest decrease the quality of river water. Thus a study was conducted t...Water quality testing was compulsory for management of safe and reliable water sources. Various sources of pollution and destruction of mangrove forest decrease the quality of river water. Thus a study was conducted to determine the water quality status of mangrove forest river water of Awat-Awat Lawas Sarawak and compare the water quality status of disturbed and undisturbed mangrove forest river in that area. Samples from twelve sampling stations were collected from both mangrove forest river from October 2013 to March 2014. In-situ data collected (pH, temperature, dissolved oxygen (DO), salinity, turbidity, total dissolved solid (TDS), conductivity) and laboratory analysis (biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (AN), total suspended solid (TSS)) were conducted according to the Standard method of Examination of Water and Wastewater AHPA 2005. Six water parameters: pH, DO, BOD, COD, AN and TSS value were used in calculating the Water Quality Index (WQI). Mean values for disturbed area were follows, pH (7.07), temperature (29.93°C), salinity (15.64 PSU), turbidity (55.13 NTU), DO (4.59 mg/L), BOD (0.73 mg/L), COD (10.16 mg/L), AN (0.14 mg/L), TSS (53.92 mg/L), TDS (23.14 mg/L) and conductivity (2.61 ms/m). Undisturbed area results were, pH (6.84), temperature (28.32°C), salinity (14.65 PSU), turbidity (35.41 NTU), DO (2.39 mg/L), BOD (0.55 mg/L), COD (15.82 mg/L), AN (0.13 mg/L), TSS (53.23 mg/L), TDS (22.82 mg/L) and conductivity (2.34 ms/m). There were no significant differences between two locations except for DO. Both water qualities of disturbed and undisturbed mangrove forest river were found under Class III, which describe that the water bodies are in moderate quality status.展开更多
Polybrominated diphenyl ethers (PBDEs), a class of persistent organic pollutants, have been frequently detected in soil at e-waste recycling sites. However, the key factors controlling the transport of PBDEs from surf...Polybrominated diphenyl ethers (PBDEs), a class of persistent organic pollutants, have been frequently detected in soil at e-waste recycling sites. However, the key factors controlling the transport of PBDEs from surface soil to the vadose zone and groundwater are unclear. Here, colloid-enhanced leaching of PBDEs from undisturbed soil cores collected at an e-waste recycling site in Tianjin, China, is reported. Spatially heterogeneous release of colloids and PBDEs was observed in all the tested soil cores under chemical and hydrodynamic perturbations, indicating the presence of preferential flow paths. Colloid concentration in the effluent significantly increased as ionic strength decreased (from 10 to 0.01 mmol/L), probably due to the stronger electrostatic repulsion between colloidal particles and the soil matrix at lower ionic strength. In contrast, colloid mobilization was not significantly affected by the changes in pH of the influent (from 4.0 to 10.0) and flow rate (from a Darcy velocity of 1.5 to 6.0 cm/h). The concentrations of 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209), the predominant PBDE congener at the site, detected in the leachate (ranging from 1.09 to 3.43 ng/L) were much lower than previously reported results from packed column leaching tests, and were positively correlated with colloid concentrations. This indicates that remobilization of colloids at e-waste recycling sites can promote the leaching and downward migration of PBDEs from surface soil. The findings highlight the potential risk of surface soil PBDE contamination to groundwater quality and call for further understanding of colloid-facilitated transport for predicting the fate of PBDEs at e-waste recycling sites.展开更多
The positive ecological interaction between gap formation and natural regeneration has been examined but little research has been carried out on the effects of gaps on natural regeneration in forests under different i...The positive ecological interaction between gap formation and natural regeneration has been examined but little research has been carried out on the effects of gaps on natural regeneration in forests under different intensities of disturbance.This study evaluates the composition,diversity,regeneration density and abundance of natural regeneration of tree species in gaps in undisturbed,intermittently disturbed,and disturbed forest sites.Bia Tano Forest Reserve in Ghana was the study area and three gaps each were selected in the three forest site categories.Ten circular subsampling areas of 1 m2 were delineated at 2 m spacing along north,south,east,and west transects within individual gaps.Data on natural regeneration<350 cm height were gathered.The results show that the intensity of disturbance was disproportional to gap size.Species diversity differed significantly between undisturbed and disturbed sites and,also between intermittently disturbed and disturbed sites for Simpson’s(1-D),Equitability(J),and Berger-Parker(B-P)indices.However,there was no significant difference among forest sites for Shannon diversity(H)and Margalef richness(MI)indices.Tree species composition on the sites differed.Regeneration density on the disturbed site was significantly higher than on the two other sites.Greater abundance and density of shade-dependent species on all sites identified them as opportunistic replacements of gap-dependent pioneers.Pioneer species giving way to shade tolerant species is a natural process,thus make them worst variant in gap regeneration.展开更多
Polybrominated diphenyl ethers(PBDEs)are ubiquitous contaminants,especially in the soil and groundwater of contaminated sites and landfills.Notably,2,20,3,30,4,40,5,50,6,60-decabromodiphenyl ether(BDE-209),one of the ...Polybrominated diphenyl ethers(PBDEs)are ubiquitous contaminants,especially in the soil and groundwater of contaminated sites and landfills.Notably,2,20,3,30,4,40,5,50,6,60-decabromodiphenyl ether(BDE-209),one of the most frequently and abundantly detected PBDE congeners in the environment,has recently been designated as a new pollutant subject to rigorous control in China.Colloid-facilitated transport is a key mechanism for the release of PBDEs from surface soils and their migration in the aquifer,but the effects of hydrodynamic conditions,particularly transient flow,on colloid-facilitated release of PBDEs are not well understood.Herein,we examined the effects of typical transient flow conditions on the release characteristics of colloids and BDE-209 from surface soil collected from an e-waste recycling site by undisturbed soil core leaching tests involving multiple dry–wet cycles(with different drying durations)and freeze–thaw cycles.We observed significant positive correlations between BDE-209 and colloid concentrations in the leachate in both the dry–wet and freeze–thaw leaching experiments,highlighting the critical role of colloids in facilitating BDE-209 release.However,colloids mobilized during the dry–wet cycles contained higher contents of BDE-209 than those in the freeze–thaw cycle tests,and the difference was primarily due to the more intensive disintegration of soil aggregates and elution of newly formed inorganic colloidal particles(mainly primary silicate minerals such as quartz and albite)with low BDE-209 content during the freeze–thaw process.These findings underscore the necessity of considering transient flow conditions when assessing the fate and risks of PBDEs at contaminated sites.展开更多
We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ...We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ( 60%). The fraction of clay was 3%. Total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 729 to 1922 mg/kg and from 692 to 1388 mg/kg, respectively. Nutrient concentrations within the sediments usually decreased with increasing depth. The TN and TP concentrations within the fine sand were higher than for that within silt. Sediment phosphorus fractions were between 2.99% and 3.37% Ex-P (exchangeable phosphorus), 7.89% and 13.71% Fe/Al-P (Fe, Al oxides bound phosphorus), 61.32% and 70.14% Ca-P (calcium-bound phosphorus), and 17.03% and 22.04% Org-P (organic phosphorus). Nitrogen and phosphorus release from sediment could lead to the presence of 21.02 mg N/L and 3.10 mg P/L within the water column. A river restoration project should address the sediment nutrient stock.展开更多
In this paper,three-dimensional(3D)finite element analyses of a real-scale group-pile foundation subjected to horizontal cyclic loading are conducted using a program named DBLEAVES.In the simulations,nonlinear behavio...In this paper,three-dimensional(3D)finite element analyses of a real-scale group-pile foundation subjected to horizontal cyclic loading are conducted using a program named DBLEAVES.In the simulations,nonlinear behaviors of ground and piles are described by subloading tij.model and the axial-force dependent model(AFD model)which considered the axial-force dependency in the nonlinear moment-curvature relations.In order to consider the influence of an effective stress path on the prediction of the group-pile foundation,the analyses are conducted within the framework of the soil-water coupling method with finite-difference and finite-element regime.The material parameters of soils are determined based on conventional triaxial drained compression tests on undisturbed and remolded specimens.The applicability of the proposed numerical method is encouraging,and therefore,it is quite confident to say that the method can be used to predict the mechanical behaviors of group-pile foundation to a satisfactory accuracy,particularly with the effective stress analysis.展开更多
基金supported the by the National Key R&D Program of China (Grant no. 2021YFC2801400)。
文摘The firn aquifer beneath the Greenland Ice Sheet may play a significant role in rising sea level. Both traditional mechanical drilling and electric thermal drilling are poorly adapted for effective, low-disturbance sampling in firn aquifers. We propose using a vibrocoring technique for the undisturbed sampling of dry firn and firn aquifer layers. A remote-controlled vibrocorer is designed to obtain 1-m-long cores with a diameter of 100 mm. The depth capacity of the system is approximately 50 m. The total weight of the vibrocoring system with the surface auxiliary equipment is approximately 110 kg, and corer assembly itself weighs ~60 kg.
文摘Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.
基金National Natural Science Foundation of China under Grant No.51108163Natural Science Foundation of Heilongjiang Province under Grant No.E201104
文摘The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.
基金supported bythe National Natural Science Foundation of China(Grant Nos.50579006,50639010 and 50909014)
文摘Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.
基金Project(51108485)supported by the National Natural Science Foundation of ChinaProject(20110191120033)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China+1 种基金Projects(106112013CDJZR200001,CDJZR12200012)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(cstc2013jcyjA30005)supported by the Natural Science Foundation of Chongqing,China
文摘The unsaturated undisturbed quaternary system middle pleistocene loess,a typical unsaturated soil,often occurs in the implementation of western development strategy.To obtain the shearing strength characteristics of this unsaturated undisturbed loess,based on the analysis of mineral composition,the triaxial shear test of undisturbed quaternary system middle pleistocene loess under different moisture contents is conducted with the specialized triaxial instrument for unsaturated soil.The test results show that the mainly mineral composition of undisturbed quaternary system middle pleistocene loess is quartz and albite.Under the same confining pressure,the matric suction increases with the decrease of moisture content.The smaller the moisture content,the larger the matric suction;the higher the moisture content,the lower the matric suction.Under the same moisture content,the matric suction increases with the confining pressure and reaches a maximum when the confining pressure is 100 kPa,and then decreases with the increase of confining pressure.This phenomenon is closely related to the grain contact tightness of soil mass under high confining pressure.According to the triaxial test of loess,the sample of loess experiences 4 stages from loading to failure:1) compaction stage;2) compression stage;3) microcrack developing stage;4) shear failure stage.The test sample is of brittle failure(weak softening)under low moisture content and confining pressure.With the decrease of matric suction and the increase of consolidated confining pressure,the stress-strain curve changes from softening type to ideal plastic type.In the shearing strength parameters of unsaturated undisturbed loess,the influence of moisture content on internal friction angle is small,but that on cohesive force is obvious.Therefore,the shearing strength of unsaturated undisturbed loess is higher than that of saturated undisturbed loess and varies with the moisture content.
基金the Australian Research Council (ARC) Centre of Excellence in Geotechnical Science and Engineering and the Centre for Geomechanics and Railway Engineering (CGRE) of University of Wollongong (UOW) for the financial support
文摘In recent years, reconstituted small samples have often been used to assess the performance of radial consolidation due to prefabricated vertical drains(PVDs), but the permeability and compressibility of samples of undisturbed soil often differ from those of the remoulded ones. The problem seems more complex in marine environment due to the presence of random coarse particles including gravels, shells and natural partings. Performing small-scale laboratory experiment with reconstituted samples, especially in marine environment, cannot predict the exact soil behaviour in the field. This paper describes an experimental programme that measures radial consolidation using a conventional Rowe cell and a largescale consolidometer, where the samples of undisturbed soil obtained from a site along the Pacific Highway(north of Sydney) were compared using measured settlements and excess pore pressures.Moreover, this paper highlights the implications of the smear effect and sample size influence, which are imperative in translating the laboratory testing practices to actual real-life behaviour. The effect of vacuum pressure on the coefficient of radial consolidation of a large-scale undisturbed test specimen is also discussed. The paper demonstrates that the extent of smear zone in the field can be very similar to the large-scale laboratory consolidation test using a scaled-down drain and mandrel, but considerably different from the data obtained for small laboratory specimens.
文摘The undisturbed ground temperatures are important for design of the ground heat exchangers in ground source heat pump (GSHP) systems. In this paper, the undisturbed ground temperatures measured in two different methods are presented. The investigation was carried out in two cases. The temperature measured with the direct method is assumed to give the correct undisturbed ground temperature profile. The temperature measured with indirect method overestimates the undisturbed ground temperature by 2.1℃ and 1.7~C. This difference is mainly caused by the circulation pump and ambient air to the fluid. Therefore, the results that are decreased about 2℃ as compared with the indirect measured are recommended to estimate the undisturbed ground temperature in situ measuring. A smaller pump or deeper borehole or mild weather would result in a more correct temperature. Because the undisturbed ground temperature is affected by many factors. Whether or not these conclusions are correct to other areas, this would need further investigation.
基金supported by National Natural Science Foundation of China (No. 51304209)the Natural Science Foundation of Jiangsu Province of China (No. BK20141135)the Fundamental Research Funds for the Central Universities (No. 2015QNA63)
文摘The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its behaviors of undisturbed and reconstituted frozen soils at temperatures close to 0 ℃. A series of triaxial compression tests(TCT) were performed by using a developed testing apparatus and a matching specimen-preparation method. The confinement was applied from air pressure, the temperature in the specimen was maintained using two-end refrigeration, and multi-stage loading on a single specimen was adopted to determine the strength. The test results showed that the strength, both for the undisturbed and reconstituted frozen-soil specimens, was significantly dependent on the temperatures and independent of the applied confining pressures. Additionally, the strength of undisturbed frozen soils was about 1.6 times more than that for reconstituted frozen soils. These observations were closely associated with the structures existing between pore-ice and gravels with large diameters.
基金Supported by National Natural Science Foundation of China (No. 50639010, 50779003 and 50909014)
文摘There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus de-veloped by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consoli-dation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress,initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio wereinvestigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientationangle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate prin-cipal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic cou-pling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stressdirections during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.
文摘Water quality testing was compulsory for management of safe and reliable water sources. Various sources of pollution and destruction of mangrove forest decrease the quality of river water. Thus a study was conducted to determine the water quality status of mangrove forest river water of Awat-Awat Lawas Sarawak and compare the water quality status of disturbed and undisturbed mangrove forest river in that area. Samples from twelve sampling stations were collected from both mangrove forest river from October 2013 to March 2014. In-situ data collected (pH, temperature, dissolved oxygen (DO), salinity, turbidity, total dissolved solid (TDS), conductivity) and laboratory analysis (biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (AN), total suspended solid (TSS)) were conducted according to the Standard method of Examination of Water and Wastewater AHPA 2005. Six water parameters: pH, DO, BOD, COD, AN and TSS value were used in calculating the Water Quality Index (WQI). Mean values for disturbed area were follows, pH (7.07), temperature (29.93°C), salinity (15.64 PSU), turbidity (55.13 NTU), DO (4.59 mg/L), BOD (0.73 mg/L), COD (10.16 mg/L), AN (0.14 mg/L), TSS (53.92 mg/L), TDS (23.14 mg/L) and conductivity (2.61 ms/m). Undisturbed area results were, pH (6.84), temperature (28.32°C), salinity (14.65 PSU), turbidity (35.41 NTU), DO (2.39 mg/L), BOD (0.55 mg/L), COD (15.82 mg/L), AN (0.13 mg/L), TSS (53.23 mg/L), TDS (22.82 mg/L) and conductivity (2.34 ms/m). There were no significant differences between two locations except for DO. Both water qualities of disturbed and undisturbed mangrove forest river were found under Class III, which describe that the water bodies are in moderate quality status.
基金supported by the National Key Research and Development Program of China(No.2019YFC1804202)the National Natural Science Foundation of China(No.22020102004)+2 种基金the Tianjin Municipal Science and Technology Bureau(China)(No.21JCZDJC00280)the Fundamental Research Funds for the Central Universities(China)(No.63233056)the Ministry of Education of China(No.T2017002).
文摘Polybrominated diphenyl ethers (PBDEs), a class of persistent organic pollutants, have been frequently detected in soil at e-waste recycling sites. However, the key factors controlling the transport of PBDEs from surface soil to the vadose zone and groundwater are unclear. Here, colloid-enhanced leaching of PBDEs from undisturbed soil cores collected at an e-waste recycling site in Tianjin, China, is reported. Spatially heterogeneous release of colloids and PBDEs was observed in all the tested soil cores under chemical and hydrodynamic perturbations, indicating the presence of preferential flow paths. Colloid concentration in the effluent significantly increased as ionic strength decreased (from 10 to 0.01 mmol/L), probably due to the stronger electrostatic repulsion between colloidal particles and the soil matrix at lower ionic strength. In contrast, colloid mobilization was not significantly affected by the changes in pH of the influent (from 4.0 to 10.0) and flow rate (from a Darcy velocity of 1.5 to 6.0 cm/h). The concentrations of 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209), the predominant PBDE congener at the site, detected in the leachate (ranging from 1.09 to 3.43 ng/L) were much lower than previously reported results from packed column leaching tests, and were positively correlated with colloid concentrations. This indicates that remobilization of colloids at e-waste recycling sites can promote the leaching and downward migration of PBDEs from surface soil. The findings highlight the potential risk of surface soil PBDE contamination to groundwater quality and call for further understanding of colloid-facilitated transport for predicting the fate of PBDEs at e-waste recycling sites.
基金the Internal Grant Agency of Mendel University in Brno(MENDELU,project no.LDF_VP_2019015)。
文摘The positive ecological interaction between gap formation and natural regeneration has been examined but little research has been carried out on the effects of gaps on natural regeneration in forests under different intensities of disturbance.This study evaluates the composition,diversity,regeneration density and abundance of natural regeneration of tree species in gaps in undisturbed,intermittently disturbed,and disturbed forest sites.Bia Tano Forest Reserve in Ghana was the study area and three gaps each were selected in the three forest site categories.Ten circular subsampling areas of 1 m2 were delineated at 2 m spacing along north,south,east,and west transects within individual gaps.Data on natural regeneration<350 cm height were gathered.The results show that the intensity of disturbance was disproportional to gap size.Species diversity differed significantly between undisturbed and disturbed sites and,also between intermittently disturbed and disturbed sites for Simpson’s(1-D),Equitability(J),and Berger-Parker(B-P)indices.However,there was no significant difference among forest sites for Shannon diversity(H)and Margalef richness(MI)indices.Tree species composition on the sites differed.Regeneration density on the disturbed site was significantly higher than on the two other sites.Greater abundance and density of shade-dependent species on all sites identified them as opportunistic replacements of gap-dependent pioneers.Pioneer species giving way to shade tolerant species is a natural process,thus make them worst variant in gap regeneration.
基金supported by the National Key Research and Development Program of China(2019YFC1804202)the National Natural Science Foundation of China(22276101 and 22020102004)+1 种基金the Fundamental Research Funds for the Central Universities(63233056)the Ministry of Education of China(T2017002).
文摘Polybrominated diphenyl ethers(PBDEs)are ubiquitous contaminants,especially in the soil and groundwater of contaminated sites and landfills.Notably,2,20,3,30,4,40,5,50,6,60-decabromodiphenyl ether(BDE-209),one of the most frequently and abundantly detected PBDE congeners in the environment,has recently been designated as a new pollutant subject to rigorous control in China.Colloid-facilitated transport is a key mechanism for the release of PBDEs from surface soils and their migration in the aquifer,but the effects of hydrodynamic conditions,particularly transient flow,on colloid-facilitated release of PBDEs are not well understood.Herein,we examined the effects of typical transient flow conditions on the release characteristics of colloids and BDE-209 from surface soil collected from an e-waste recycling site by undisturbed soil core leaching tests involving multiple dry–wet cycles(with different drying durations)and freeze–thaw cycles.We observed significant positive correlations between BDE-209 and colloid concentrations in the leachate in both the dry–wet and freeze–thaw leaching experiments,highlighting the critical role of colloids in facilitating BDE-209 release.However,colloids mobilized during the dry–wet cycles contained higher contents of BDE-209 than those in the freeze–thaw cycle tests,and the difference was primarily due to the more intensive disintegration of soil aggregates and elution of newly formed inorganic colloidal particles(mainly primary silicate minerals such as quartz and albite)with low BDE-209 content during the freeze–thaw process.These findings underscore the necessity of considering transient flow conditions when assessing the fate and risks of PBDEs at contaminated sites.
基金supported by the National Natural Sci- ence Foundation of China (No. 51079068)the Natural Science Foundation of Tianjin (No. 09ZCGYSF00400, 08FDZDSF03402)+1 种基金the National Key-Projects of Water Pollution Control and Prevention (No. 2008ZX07314-005- 001, 2009ZX07209-001)funded by The Royal Society
文摘We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ( 60%). The fraction of clay was 3%. Total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 729 to 1922 mg/kg and from 692 to 1388 mg/kg, respectively. Nutrient concentrations within the sediments usually decreased with increasing depth. The TN and TP concentrations within the fine sand were higher than for that within silt. Sediment phosphorus fractions were between 2.99% and 3.37% Ex-P (exchangeable phosphorus), 7.89% and 13.71% Fe/Al-P (Fe, Al oxides bound phosphorus), 61.32% and 70.14% Ca-P (calcium-bound phosphorus), and 17.03% and 22.04% Org-P (organic phosphorus). Nitrogen and phosphorus release from sediment could lead to the presence of 21.02 mg N/L and 3.10 mg P/L within the water column. A river restoration project should address the sediment nutrient stock.
文摘In this paper,three-dimensional(3D)finite element analyses of a real-scale group-pile foundation subjected to horizontal cyclic loading are conducted using a program named DBLEAVES.In the simulations,nonlinear behaviors of ground and piles are described by subloading tij.model and the axial-force dependent model(AFD model)which considered the axial-force dependency in the nonlinear moment-curvature relations.In order to consider the influence of an effective stress path on the prediction of the group-pile foundation,the analyses are conducted within the framework of the soil-water coupling method with finite-difference and finite-element regime.The material parameters of soils are determined based on conventional triaxial drained compression tests on undisturbed and remolded specimens.The applicability of the proposed numerical method is encouraging,and therefore,it is quite confident to say that the method can be used to predict the mechanical behaviors of group-pile foundation to a satisfactory accuracy,particularly with the effective stress analysis.